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ABSTRACT

This paper examines strategies to quantify differences in

the morphology of time series while accounting for time

skew in the observed data. We adapt four measures orig-

inally designed for signal shape comparison: Dynamic

Time-Warping (DTW), Earth Mover’s Distance (EMD),

Fréchet Distance (FD), and Hausdorff Distance (HD).

These morphology difference metrics on time series are

compared in discriminative power and noise resistance

on ECG signals as well as on a synthetic dataset. We use

data from our experiments to shed light on the relative

strengths of the methods.

Index Terms— shape matching, time skew

1. INTRODUCTION

Quantifying the similarity of two time series is of im-

portance in many signal-processing applications. Simple

metrics such as Euclidean distance are not suitable when

the signals have variable amounts of time skew. In this

case, comparing samples by their timing may cause parts

of the signals associated with different phenomena to be

compared, leading to a poor estimate of similarity.

Methods that relate corresponding parts of two sig-

nals before measuring differences are useful in a variety

of settings (e.g. [1, 2]). In this paper we consider

four morphology difference measures for real-valued

time series represented as sequences of time-amplitude

pairs, (t1, v1), . . . , (tn, vn). Some of these measures are

adapted from earlier methods for comparing shapes in

a general metric space. We consider Dynamic Time-

Warping (DTW) as well as adaptations of Earth Mover’s

Distance (EMD), Fréchet Distance (FD), and Hausdorff

Distance (HD).

We evaluate each metric in two ways. We first exam-

ine the distances produced when the metric is used to dis-

criminate one shape from another. We then examine the

robustness of the metric when its inputs are corrupted by

noise. Both analyses are performed on two datasets: syn-

thetic data from the cylinder-bell-funnel problem [3] and

ECG data from the PhysioNet MIT-BIH dataset [4]. Al-

though various classification techniques have previously

been applied to identify broad and clinically recognized

classes of behavior in ECG data [5], our focus here is on

quantifying subtler morphologic differences. One pos-

sible application is the measurement of patterns of my-

ocardial instability that may portend high risk [2].

Section 2 summarizes the four metrics and the adap-

tations we propose to them. Section 3 describes the eval-

uation procedure and results. Section 4 concludes with a

discussion.

2. TECHNIQUES

2.1. Dynamic Time-Warping

The Dynamic Time-Warping (DTW) distance metric [6]

computes the distortion needed to align two time se-

ries. An alignment of two sequences A and B, of length

m and n respectively, is a sequence of integer pairs

(φA[1], φB [1]), (φA[2], φB [2]), . . . , (φA[k], φB [k]) sat-

isfying the boundary conditions φA[1] = 1, φB [1] = 1,

φA[k] = m, and φB [k] = n, as well as these continuity

conditions:

φA[j] ≤ φA[j + 1] ≤ φA[j] + 1,
φB [j] ≤ φB [j + 1] ≤ φB [j] + 1.

Intuitively, each ordered pair (φA[i], φB [i]) matches

two elements to be aligned. The DTW distance between

A and B is the minimum sum-of-squares difference over

all allowable alignments:

DTW(A,B) ≡ min
φA,φB

∑
i

(A[φA[i]]−B[φB [i]])2. (1)

DTW captures both amplitude and timing differences

between the signals. Timing differences are captured by

an increase in the length k of the alignment (i.e. a larger

number of summed terms).

2.2. Earth Mover’s Distance

Earth Mover’s Distance (EMD) [7] is a metric for com-

paring two non-negative signals based on the amount of

work needed to construct one signal by deforming the

other (we obtain non-negativity by taking the absolute

value of each signal, if necessary). The signal with larger
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total mass is considered to be the source (A) and the

smaller signal is considered to be the goal (B).

The goal signal is constructed by moving mass from

where it exists in the source signal. Suppose f(tA, tB) is

the amount of mass to be moved from point tA to point

tB . The function f describes an allowable movement if

it does not exhaust the mass available at the source and

satisfies the demand at the goal:

A[t]−∑
tB
f(t, tB) ≥ 0 ∀t

A[t] +
∑

tA
f(tA, t) ≥ B[t] ∀t. (2)

EMD is the minimum amount of work needed (over

all allowable functions f ) to construct the goal, where

one unit of work is needed to move a unit mass a unit

distance. The result is normalized by the total mass of

the goal signal:

EMD(A,B) ≡ minf
∑

tA,tB
|tA − tB |f(tA, tB)∑
tB[t]

. (3)

The problem of computing the minimum work can be

expressed as a linear program.

2.3. Fréchet Distance

Fréchet Distance (FD) [8] is often described by analogy

to a man walking a dog: a man and a dog, connected by

a leash, walk along different paths. The man and the dog

may move at any speed they wish, but neither may move

backwards. FD is the minimum leash length that allows

the man and the dog to traverse their paths.

Formally, given two directed paths parameterized by

functions A and B mapping [0, 1] to the set S, and a met-

ric d(s1, s2) on S, FD is defined as

FD(A,B) ≡ min
φA,φB

max
0≤t≤1

d(A(φA(t)), B(φB(t))).

(4)

where φA and φB (intuitively, the positions of the man

and dog as functions of time) may be any monotonically

non-decreasing continuous functions from [0, 1] to [0, 1]
satisfying the boundary conditions φA(0) = 0, φA(1) =
1, φB(0) = 0, and φB(1) = 1.

To apply FD to time-series data, we treat a time series

as a path in time-amplitude space and define a distance

metric of the form d((t1, v1), (t2, v2)).

2.4. Hausdorff Distance

Hausdorff Distance (HD) [9] measures the difference be-

tween two closed and bounded sets of points. Given a

metric d(s1, s2), the distance from a single point a to a

set B can be defined as the distance from a to the nearest

point in B, i.e. minb∈B d(a, b). To generalize this notion

to two sets A and B, we consider the maximum distance

from any point in either set to the other set:

HD(A,B)≡max
{

max
a∈A

min
b∈B

d(a,b),max
b∈B

min
a∈A

d(a,b)
}
.

(5)

To apply HD to time-series data, we treat each input

sample as a point in time-amplitude space (t, v) and de-

fine a metric d((t1, v1), (t2, v2)).

3. EVALUATION AND RESULTS

3.1. Selecting scaling parameters for FD and HD

FD and HD are both parameterized by a distance metric

d((t1, v1), (t2, v2)). Such a metric must make some

trade-off in how it weights changes in time against

changes in amplitude. The particular choice of met-

ric may affect performance on applications to which the

distance measure is applied. To assess FD and HD, we

evaluate their performance with a range of metrics. In

particular, we consider metrics of the form

d((t1, v1), (t2, v2)) ≡
√

(v2−v1)2 + α2(t2−t1)2 (6)

where α (the “scaling parameter”) is a positive number

which sets the relative weight of unit changes in time and

amplitude.

3.2. Discrimination ability in the cylinder-bell-funnel
problem

To evaluate the utility of the various morphologic dis-

tance measures for distinguishing between shapes, we

compared the distances yielded by each method on a set

containing 500 randomly generated instances of each of

the three eponymous classes (shapes) of the cylinder-

bell-funnel (CBF) problem [3].

For each metric, we computed the pairwise distances

between all 1500 elements of the set. We then mea-

sured the ratio of the average distance in pairs containing

different shapes to the average distance in pairs of the

same shape. We refer to this ratio as the inter/intra dis-

tance ratio (IIDR). High values of the IIDR indicate that

the method distinguishes between instances of different

classes while ignoring differences between instances of

the same class.

For FD and HD, we evaluated the IIDR under various

scaling parameters as described in Section 3.1. The re-

sults are shown in Figure 1. For subsequent experiments

on this dataset, we evaluated FD and HD using the scal-

ing parameters that yielded the highest IIDR here.

The IIDR observed for each of the four methods is

reported in Table 1. DTW, followed by EMD, showed

the best performance among the methods considered.
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Fig. 1. Discrimination performance (IIDR) on CBF data

as a function of the scaling parameter.

Method IIDR

DTW 2.06

EMD 1.82

Fréchet α = 0.105 1.38

Hausdorff α = 0.087 1.58

Table 1. Discrimination performance (IIDR) on CBF

data for the four morphologic distance metrics.

3.3. Noise resistance in the cylinder-bell-funnel prob-
lem

We evaluated the noise resistance of each morphologic

distance metric by comparing the morphologic distances

obtained from given inputs to the morphologic distances

obtained when those inputs were corrupted by noise.

We synthesized 100 pairs of random cylinder-bell-

funnel instances (i.e. 200 instances) and computed the

morphologic distance between the elements of each pair.

We then corrupted each instance with Gaussian white

noise of a fixed variance. The computation of morpho-

logic distances was repeated on the noisy data. The cor-

relation coefficient of the two output sequences was used

as a measure of how robust the metric was against noise.

We evaluated this correlation for various values of noise

variance.

A graph showing the morphologic distance correla-

tions observed for various noise levels is presented in

Figure 2. DTW showed the highest noise resistance at

all noise levels, followed by EMD.

3.4. Discrimination ability on ECG data

We performed experiments analagous to those in Sec-

tions 3.2 and 3.3 on electrocardiogram (ECG) data. We

acquired ECG data for 23 patients from a subset of the

MIT-BIH PhysioNet dataset [4] that is intended to be

a representative sample of ECG waveforms. The data

were annotated with cardiologist-supplied labels for each

heartbeat. We excluded 9 patients who did not have at

least two differently labeled beats each of which occurred

at least five times. For each of the remaining 14 patients,
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Fig. 2. Correlation between morphologic distance mea-

sures on clean and noisy CBF instances, as a function of

noise applied.
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Fig. 3. Discrimination performance (average IIDR) on

ECG data as a function of the scaling parameter.

we randomly selected pairs of heartbeats with the same

label and pairs of heartbeats with different labels. We

then computed the IIDR—here, the ratio of the average

distance between beats of different labels to the average

distance between beats of the same label. The average

IIDR across all patients was considered to be a measure

of discrimination performance in this application.

For FD and HD, appropriate scaling parameters were

selected as in Section 3.2; the average IIDR as a function

of scaling parameter is shown in Figure 3. The average

IIDR for each of the four metrics is reported in Table

2. In this application, DTW and EMD again showed the

best discrimination performance.

3.5. Noise resistance on ECG data

We evaluated the noise resistance of each method as in

Section 3.3, using the pairs of ECG signals from the pre-

vious experiment. Figure 4 shows the correlation be-

tween the morphologic distances on clean data and the

morphologic distances when the data were corrupted by

noise, as a function of the noise variance. DTW showed

the highest noise resistance at all noise levels, followed
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Method IIDR

DTW 2.66

EMD 2.16

Fréchet α = 0.0077 1.74

Hausdorff α = 0.0077 1.76

Table 2. Discrimination performance (average IIDR) on

ECG data for the four morphologic distance metrics.
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Fig. 4. Correlation between morphologic distance mea-

sures on clean and noisy ECG data, as a function of noise

applied.

by HD.

4. CONCLUSION

DTW showed the best performance in all of the exper-

iments, and EMD showed the second-best performance

in three of the four experiments. We believe that the su-

perior performance of the DTW and EMD methods is in

part due to the fact that they sum a particular cost func-

tion across the entire signal, yielding a cumulative as-

sessment of morphology differences.

In contrast, FD and HD look at the input samples to

see where some feature is maximized, and then use that

as their computed distance. Consequently, those met-

rics are quite sensitive to differences (including random

noise) in limited regions of the two signals—differences

that are not necessarily representative of morphologic

differences across the entire signal. In many settings,

measurements are accompanied by significant amounts

of noise, so it is critical that signal processing techniques

are robust against this noise.

One additional consideration is that the use of FD and

HD (as described here) is complicated somewhat by the

need to select an appropriate metric. This choice of met-

ric can have a significant effect on discrimination perfor-

mance.

We note that our results should not be interpreted as

discouraging in general the use of any of the methods

considered here. The best method to use in any situa-

tion is liable to depend on the specifics of the application

and on a physical intuition for the problem. The vari-

ous methods also likely have varying sensitivity to dif-

ferent kinds of morphologic differences. Further inves-

tigation on additional datasets might yield a more com-

plete picture of the relative strengths of each method. Fi-

nally, some of these methods operate in general metric

spaces and are thus suitable for comparisons of higher-

dimensional data; however, we did not evaluate such ap-

plications here.
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