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ABSTRACT

In this paper, we introduce a novel noise suppression method for
electromyography (EMG) signals, based on statistical modeling of
wavelet coefficients. First, we demonstrate that Generalized Autore-
gressive Conditional Heteroscedasticity (GARCH) effect exists in
wavelet coefficients of EMG signals. Then, we use GARCH model
for these coefficients. In consequence, we introduce a maximum
a-posteriori (MAP) estimator ,based on GARCH modeling, for esti-
mating the clean wavelet coefficients. To evaluate the performance
of GARCH based method in noise suppression, we compare our pro-
posed method with other wavelet based denoising methods and we
verify the performance improvement in utilizing the new strategy.

Index Terms— MAP estimation, Wavelet transform, Filtering,
Electromyography.

1. INTRODUCTION

Biomedical signal means a collective electrical signal acquired from
any organ that represents a physical variable of interest. Electromyo-
graphy (EMG) signal is a biomedical signal. It is a train of Motor
Unit Action Potential (MUAP) showing the muscle response to neu-
ral stimulation. It can be detected by a skin surface electrode (non-
invasive) located near the muscle, or by a needle electrode (invasive)
inserted in the muscle. The EMG signal appears random in nature
and is generally modelled as a filtered impulse process where the
MUAP is the filter and the impulse process stands for the neuron
pulses. It is difficult to obtain high-quality electrical signals from
EMG sources because the signals typically have low amplitude (in
range of mV) and are easily corrupted by noise, hence, when detect-
ing and recording the EMG signal, there is a main issue of concern
that influence the fidelity of the signal that is the signal-to-noise ratio.
The EMG signal should be processed to suppress the noise. before
being displayed or stored [1].
Conventional noise removal techniques can be used for denoising
medical signals such as EMG signal. These methods classified as
smoothing or filtering methods. With most conventional noise re-
moval methods, undesirable side effects, such as attenuation and
widening of sharp, high-frequency transient components, often re-
sult. These problems, as applied to biomechanical signals, have
been addressed by several investigators [2, 3]. Methods based on
the Fourier transform (FT), can perfectly isolate the frequency con-
tent of a signal, but cannot localize when the components occurred
in time. Any abrupt change in the signal is spread out over its entire
frequency spectrum. Wavelet techniques can localize both time and
frequency components, as signals are processed and analyzed at var-
ious scales, or resolutions. There has been considerable interest in
using the wavelet transform as a powerful tool for processing EMG
signals. In general, wavelet denoising procedures consist of three

main steps: First, Calculate the wavelet transform of the noisy EMG
signal. Second, Manipulate the wavelet coefficients. Third, Com-
pute the inverse transform using the modified coefficients. How-
ever, manipulating the wavelet coefficients is the most crucial step.
Loosely speaking, two major denoising techniques used in this con-
text are the thresholding technique, initially proposed in [4], and
the Bayesian estimation technique. However, thresholding methods
have two main drawbacks: i) the choice of the threshold, arguably
the most important denoising parameter, is made in an ad-hoc man-
ner; and ii) the specific distribution of the signal and noise may not
be well matched at different scales. To address these disadvantages,
the Bayesian estimation techniques can be used. Up to our knowl-
edge, all the wavelet based methods that have been used for denois-
ing EMG signals are thresholding methods.
In this paper, we propose a new Bayesian approach in the wavelet do-
main for reducing the noise of the EMG signals. As far as Bayesian
estimation is concerned, it is necessary to assume an a priori distri-
bution p(x) associated with the wavelet coefficients of the noise-free
signal. We use GARCHmodel for this purpose. ARCH and GARCH
are two statistical tools for modeling heteroscedastic time series. The
GARCHmodel [5] is widely used for modeling financial time series.
GARCH model is capable of taking into account important charac-
teristics of wavelet coefficients, namely heavy tailed marginal dis-
tribution of the wavelet coefficients and dependencies between them
as discussed in section II. Then, we use a MAP estimator for esti-
mating clean wavelet coefficients. The performance of the proposed
denoising method (based on GARCH modeling) is compared with
Thresholding techniques. Experimental results demonstrate the high
performance of the proposed method. This paper is organized as
follows: In section 2, we introduce the GARCH model and using
this model for wavelet coefficients of EMG signals. Section 3 is
dedicated to describe the new method for noise suppression in noisy
EMG signals based on GARCH modeling. Section 4 describes the
denoising algorithm based on the translation-invariant wavelet trans-
form. The experimental results are presented in Section 5. Finally,
concluding remarks are given in section 6.

2. GARCHMODELING FORWAVELET COEFFICIENTS
OF EMG SIGNALS

2.1. GARCHModel

Conventional time series and econometric models operate under an
assumption of constant variance. It has now been well established
that volatility plays an important role in many time series. ARCH
process introduced by Engle in [6] allows the conditional variance
to change over time as a function of past errors leaving the uncon-
ditional variance constant. Loosely speaking, we can think of het-
eroscedasticity as time-varying variance ,i.e., volatility. More gen-
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eral class of processes, GARCH, has been introduced by Bollerslev
in [5], allowing for a much more flexible lag structure. Next, we
briefly discuss GARCHmodeling. A time series {yt} follows a pure
GARCH(p , q) model if E(yt) = 0 and

yt =
√

htεt (1)

ht = α0 +

q�

i=1

αiy
2

t−i +

p�

j=1

βjht−j , (2)

where α0 > 0, αi � 0, βj � 0, and {εt} is a sequence of iid
random variables with mean “0” and variance “1”. In practice, εt

is often assumed to be a standard normal. Let ψt−1 denote all the
information until t − 1, namely

ψt−1 = {y0, · · · , yt−1, h0, · · · , ht−1}.
It is obvious that yt is conditionally distributed as

yt |ψt−1 ∼ N (0, ht),

whereN denotes the Gaussian probability density (PDF) function. It
is obvious that ht is the conditional variance of yt. The GARCH re-
gression model is obtained by assuming that the mean of yt is given
as rtb, a linear combination of lagged endogenous and exogenous
variables included in the information set ψt−1 with b a vector of
unknown parameters. Formally,

zt = yt − rtb, (3)
yt|ψt−1 ∼ N(rtb, ht), (4)

ht = α0 +
�

i=1:q

αiz
2

t−i +
�

i=1:p

βiht−i. (5)

From (5) it is obvious that at each time, both the neighboring sample
variances and the neighboring conditional variances play a role in the
current conditional variance. To estimate the unknown parameters
in GARCH model, maximum likelihood estimation can be used as
described in [5]. To test the existence of GARCH effect in time
series, the Lagrange multiplier test can be used as described in [5, 6].

2.2. Using GARCH Model for wavelet coefficients of EMG sig-
nals

Here, we study whether the GARCH model provides a flexible and
appropriate tool for modeling the wavelet coefficients of EMG sig-
nals. Because of limited space, in this section, we describe the mod-
eling of some representative signals. We should also note that the
modeling results of different EMG signals are similar. First, we use
the hypothesis test for the presence of ARCH/GARCH effects that
proposed in [6] and also used in [5]. It tests the null hypothesis
that no GARCH effects exist. This test statistic is also asymptoti-
cally Chi-Square distributed. The results of applying this hypoth-
esis test for some EMG signal have been shown in Table 1. sig-
nal1, signal2 and signal3 are three actual EMG signals obtained from
EMGLAB database. These EMG signals recorded by monopolar
needle electrode during low level isometric contractions of brachial
biceps in a normal subject. Other signals are simulated by EMG sig-
nal simulator that is based on [7] 1. Signal4, signal5, signal6 and
signal7 emulate signal acquired through a concentric, single fibre,
monopolar and bipolar needle electrodes at 31250 samples/second,
respectively. We applied wavelet transform on these signals. We

1EMGLAB, Stanford University.
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Fig. 1. Modeling of (a)level 1, (b)level 2, and (c)level 3 detail coef-
ficients of signal6 with the Gaussian density functions and GARCH
model, depicted in blue solid and red dashed lines, respectively. Ver-
tical bars show the normalized histogram of detail coefficients.

use “Daubechies” (Db4) with three levels of decomposition. Ta-
ble 1 shows the results related to level 2 detail coefficients of EMG
signals. In Table 1, ”H” is a Boolean decision variable. ”0” in-
dicates acceptance of the null hypothesis that no GARCH effects
exist. ”pValue” indicates the significance level at which this test
rejects the null hypothesis of no ARCH effect. ”GARCHstat” indi-
cates ARCH test statistic and ”CriticalValue” shows critical value of
the Chi-Square distribution. Significance level is 0.05 in our experi-
ments. It is clear from Table 1 that GARCH effect exists in wavelet
coefficients of all tested EMG signals.

Table 1. results of using Engles hypothesis test for the presence of
ARCH/GARCH effects.

H pValue GARCHstat CriticalValue
Signal1 1 0 3.28e+003 3.84
Signal2 1 0 1.01e+003 3.84
Signal3 1 0 3.15e+003 3.84
Signal4 1 0 5.63e+003 3.84
Signal5 1 0 7.78e+003 3.84
Signal6 1 0 7.81e+003 3.84
Signal7 1 0 6.75e+003 3.84

Also, we assess whether the wavelet coefficients of EMG signals
deviate from the normal distribution and we examine the compatibil-
ity between GARCH model and these coefficients. We employ nor-
malized histograms. Histograms give a good indication of whether
GARCH model matches the data. Fig. 1 shows the histograms of
level 1, 2 and 3 detail coefficients, best fitted Gaussian pdfs and
the histogram of the corresponding GARCH models for signal6. A
highly accurate fit can be observed between the histogram of these
distributions and GARCH models.
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Fig. 2. Block diagram of the proposed algorithm for denoising EMG
signals.

3. A MAP ESTIMATOR FOR REDUCING NOISE IN EMG
SIGNALS

In this section, our goal is to design a MAP estimator that recovers
the signal-component of the wavelet coefficients in noisy EMG sig-
nals. The proposed processor is motivated by the modeling studies
in the previous section. This approach is built on rigorous statisti-
cal theory unlike those techniques that depend on the use of ad-hoc
threshold parameters. Let y and x, respectively, represent a noisy
observation and the corresponding noise-free EMG signal. Also, let
n represents the corrupting additive noise component. We can write

y = x + n (6)

Our processor employs the wavelet transform which, through the
central limit theorem, drives the noise wavelet coefficients to ap-
proximate a Gaussian distribution, hence, we suppose that noise is
Gaussian in the wavelet domain. In the proposed method, we apply
GARCHmodel for the wavelet coefficients of EMG signals and then
we use a Bayesian processor for estimating the wavelet coefficients
of the clean signal. A functional block diagram of the proposed de-
noising method is shown in Fig. 2. First, we apply DWT to the noisy
EMG signal (y) up to arbitrary levels and we do following steps of
denoising for all levels. For an arbitrary level indicated by m, we
represent the DWT of x, n, and y by Xm, Nm, and Y m respec-
tively; then we have:

Y
m

i = X
m
i + N

m
i (7)

where ”i” indicates the index of wavelet coefficient. To simplify
the notation, in the following parts we ignore the superscriptm. We
model each level wavelet coefficients by a GARCH model. First of
all, we should estimate parameters of GARCH model Γ = {{α0 ,α1

, · · · , αq , β1, · · · , βp} , b} for each level wavelet coefficients as
described in section 2. Then, we express

zi = Yi − r
T
i b =

√
hiεi

hi = σ
2

zi
= σ

2

Yi
= α0 +

q�

k=1

αk(Yi−k − r
T
i−kb)2 +

p�

k=1

βkhi−k

where σ2

Yi
is to denote the conditional variance of Yi. If σ2

N and
σ2

Xi
denote variance of noise and conditional variance ofXi, we can

express σ2

Xi
= σ2

Yi
−σ2

N . In some applications, the input noise vari-
ance is known, otherwise, we use the recommendation by Donoho
[4]. Having estimated the GARCH model and noise distribution pa-
rameters from the data, we can compute the conditional variance of
Xi. Then, we consider the MAP estimator for estimating Xi given

the noisy observation, Yi, and the conditional variance of Xi, σ2

Xi
,

that is:

X̂i = max
X̂i

PXi|Yi,σ2

Xi

(Xi|Yi, σ
2

Xi
). (8)

= max
X̂i

P (Xi

��σ2

Xi
)P (Yi

��Xi, σ
2

Xi
) (9)

Using GARCH model, it is clear that the conditional pdf of Xi is
Gaussian. Assuming that Ni is white Gaussian noise, through (7),
the conditional pdf of Yi is also Gaussian. We can express:

�
Xi

��σ2

Xi

� ∼ N (rT
i b, σ

2

Xi
) ,

�
Yi

��Xi, σ
2

Xi

� ∼ N (Xi, σ
2

N )

By substituting the above PDFs in (9) for computing X̂i, we can
obtain the following formula

X̂i =
σ2

Xi

σ2

Xi
+ σ2

N

Yi +
σ2

N

σ2

Xi
+ σ2

N

r
T
i b = αiYi + βi (10)

Therefore, a closed-form solution for the MAP estimate of noise-
free wavelet coefficients exists when the signal prior is described by
GARCH model. It must be mentioned that in (10) αi and βi differ
for different indexes (i). Therefore, we have a nonlinear estimator.
Only for the case of Gaussian signal and Gaussian noise does a lin-
ear solution exist for the processor described. In this case, we ex-
press X̂i = αYi + β. After denoising wavelet coefficeints based on
GARCH modeling, we apply the IDWT to denoised wavelet coeffi-
cients (X̂i) to obtain the denoised EMG signal. Experimental results
demonstrate the efficiency of proposed method in comparison with
other methods for denoising EMG signals.

4. SHIFT-INVARIANTWAVELET DENOISING

The discrete wavelet transform is a shift-variant system due to the
downsampling operation. As a consequence, the result of the de-
noising operation using the DWT will depend on the starting point
of the signal in the time domain. Some investigators [8] have ob-
served that lack of shift invariance leads to specks in smooth regions
and Gibbs phenomena in the neighborhood of discontinuities, such
as overshoot and undershoot exhibited at the location of sharp sig-
nal transitions. In order to suppress the Gibbs phenomena, Coifman
and Donoho [8] proposed the cycle-spinning concept. For a range
of shifts, their method is comprised of following steps: first, circu-
lar shifting the data, applying the DWT-based denoising algorithm
to each shifted data, then unshifting the denoised data, and finally
averaging denoised data over all shifts. When cycle spinning is per-
formed for all possible shifts, the transform becomes fully shift in-
variant. In practice, the wavelet transform is only implemented to
certain levels. Thus, not all shifts are necessary in those cases. For
a J−level 1-D curtailed DWT, a total of 2J shifts are needed in or-
der to achieve shift invariance. Shifts greater than or equal to 2J

provide redundant wavelet coefficients [9]. The results of using cy-
cle spinning in GARCH based denoising of EMG signals have been
presented in the next section.

5. EXPERIMENTAL RESULTS

In this section, we study the efficiency of proposed method in de-
noising the EMG signals. We use EMG signal simulator to ob-
tain clear EMG signals. Simulated signal emulate signal acquired
through a concentric needle electrodes at 31250 samples/second.
We use “Daubechies” (Db4) with three levels of decomposition and
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Fig. 3. a part of (a)original, (b) Noisy (SNR = 10dB) and (c) de-
noised EMG signal using proposed method.

GARCH(1,1). We add different level of Gaussian noise to the simu-
lated signal and study the performance of the proposed method in re-
ducing noise. The result of denoising EMG signal in SNR = 10dB

has been shown in Fig. 3. Also, we compared the results of our ap-
proach with wavelet shrinkage denoising using soft and hard thresh-
olding that usually used for denoising EMG signals. The results are
summarized in Table 2 . In this table, best values in each raw is bold.
It is obvious from Table 2 that the GARCH based denoising method
outperforms other mentioned methods.

Table 2. SNR results of different denoising methods.
Noisy Soft Hard GARCH based

Thresholding Thresholding method
-10 dB 1.21 dB 2.93 dB 4.96 dB
-5 dB 3.20 dB 5.67 dB 8.48 dB
0 dB 5.67 dB 8.90 dB 12.14 dB
5 dB 8.63 dB 12.42 dB 15.81 dB
10 dB 11.81 dB 16.22 dB 19.85 dB

Moreover, as mentioned in previous section, in order to mini-
mize such side effects, we have embedded the proposed denoising
method into the cycle spinning algorithm [8]. This consists in av-
eraging the result of the wavelet shrinkage method over 23 circu-
lant shifts of the input EMG signal. Fig. 4 shows the improvement
obtained using cycle spinning in different levels of noise (different
SNRs).

6. CONCLUSION

Studying EMG signals demonstrates that GARCH effect exists in
wavelet coefficients of these signals, hence, we used GARCH model
for these coefficients. GARCH model can capture important char-
acteristics of wavelet coefficients such as heavy tailed marginal
distribution and the dependencies between the coefficients. Based
on GARCH modeling of wavelet coefficients, we proposed a new
Bayesian method for denoising EMG signals. Our processor is
based on solid statistical theory. Experimental results demonstrated
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Fig. 4. Using cycle spinning in GARCH based denoising of EMG
signals

the good performance of proposed method in denoising EMG sig-
nals in comparison with other wavelet based methods.
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