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ABSTRACT
We propose a new method for ventricular cancellation and

atrial modelling in the ECG of patients suffering from atrial

fibrillation. Our method is based on dictionary learning. It ex-

tends both the average beat subtraction and the sparse source

separation approaches. Experiments on synthetic data show

that this method can almost completely suppress the ventric-

ular activity, but it generates some artifacts. Contrary to other

ventricular cancellations methods, our approach also learns a

model for the atrial activity.

Index Terms— ECG, atrial fibrillation, monochannel

source separation, dictionary learning, sparse approximation,

K-SVD

1. INTRODUCTION

Atrial fibrillation (AF) is the most common type of human

arrhythmia and it is responsible for about one third of hos-

pitalizations for arrhythmia problems. AF is more frequent

in elderly, as its prevalence doubles with each decade of age,

from 0.5% at ages between 50-59 years to almost 9% at ages

between 80-89 years. AF is an important clinical entity be-

cause of the increased risk of morbidity and mortality. The

most frequent consequences are hemodynamic function im-

pairment (loss of atrial synchronized contraction, irregular

and inadequately rapid ventricular rate), atriogenic throm-

boembolic events and tachycardia induced atrial and ventricu-

lar cardiomyopathy. AF diagnosis has been assessed for years

by visual inspection of the surface electrocardiogram (ECG).

On the ECG, the AF signals are characterized by continuous,

apparently disorganized, fibrillatory waves. Due to the much

higher amplitude of the electrical ventricular activity (VA) on

the surface ECG, isolation of the atrial activity (AA) compo-

nent in the ECG is crucial for the study of AF.

Some methods used to solve this problem are based on av-

erage beat subtraction (ABS), where an average of the ventric-

ular complexes (QRST complexes) is used to subtract VA [1].

Other methods are based on independent component analy-

sis (ICA)[2]. In present ICA based approaches, a major gap

is that only statistical priors are considered without taking
into account the structural nature of signals. A sparsity-based

source separation method has also been explored in [3], which

used a simple analytical model to represent both the QRST

complexes and the fibrillatory waves.

In this work we propose to learn the dictionaries to be used

for sparsity-based source separation. This method is an hy-

brid of the ABS and sparsity approaches. It can be seen as a

way to denoise the templates used in ABS from any atrial in-

terference, or a way to perform sparse source separation with

dictionaries that are automatically adapted to the data instead

of a rough analytical model.

2. SPARSE MODELLING AND SOURCE
SEPARATION

2.1. Multichannel sparse modelling

A multichannel signal S is a matrix of size L×C, with L the

number of samples and C the number of channels. A multi-

channel dictionary is a set D of multichannel signals called
atoms where the signal on each channel has unit euclidean
norm. A multichannel dictionary is shift-invariant if it is gen-
erated by taking all the possible time shifts Tτ of a limited set

M = {mk} of short-time multichannel patterns of size l×C

with unit norm on each channel:

D = {Tτmk}.

A signal S is sparse on a dictionary D if there is a sub-

dictionary D(S) ⊂ D such that:{
|D(s)| � |D|

∀c ∈ [1, C],Π
D

(s)
c

Sc = Sc

whereDc is the monochannel dictionary containing the com-

ponents of the atoms ofD on channel c and ΠDS denotes the

orthogonal projection of S on D. S has a sparse approxima-
tion on D if these projections are close to S instead of being

equal to it. Finding a sparse decomposition of a signal on
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a dictionary is an NP-complete problem but fast suboptimal

algorithms exist, especially in the shift-invariant case. When

the dictionary is shift-invariant, this can be seen as a detection

problem: the decomposition provides the instants where each

pattern occurs in the signal.

2.2. Source separation using sparsity

The 12-lead ECGs that are studied here are a mixture of the

Ventricular Activity (VA) and the Atrial Activity (AA):

S = V A + AA.

If both sources are known to have sparse approximations on

the respective dictionaries DV A and DAA, and these dictio-

naries are mutually incoherent (i.e. a signal that is sparse on
one of them cannot be sparse on the other one), then a simple

separation algorithm can be used:

• decompose the signal on the union of the dictionaries,

• rebuild each source separately with only the atoms com-
ing from its own dictionary.

Escoda et al. applied this to separate AA and VA components

[3]. They used a Gabor dictionary for the AA and Gaussian

waveforms for the VA. We propose to use the same separation

approach with learnt dictionaries to better match the sources.

This method remains purely morphological. The incoher-

ence between dictionaries only comes from the shapes of the

patterns. Contrary to ICA-based approaches [2], the goal here

is not to identify the mixing process, but each source contri-

bution to each lead. This approach could also be used for

monochannel source separation.

3. PROCESS

3.1. Multichannel dictionary learning

Dictionary learning is performed using the shift-invariant K-
SVD algorithm described in [4] that was extended to mul-
tichannel signals. This algorithm tries to compute a set of

patterns M and a sparse approximation of the signal on the

generated dictionary D(S) ⊂ D that minimizes the approxi-

mation error

E =
∑

c

‖Sc − Π
D

(S)
c

Sc‖
2
2.

It does so by alternating 2 steps:

• decomposition: find a good signal approximation on cur-
rent dictionary.

• dictionary update: optimize the patterns to minimize the
error of the current approximation.

The decomposition step is performed using multichannel

Matching Pursuit (MP). MP is a greedy algorithm that itera-

tively selects the “best” atom d̂ from the dictionary and sub-

tracts it from the signal until the residual error has dropped

enough. The score function that was used in this work is the

�2 norm of the correlations across the channels:

d̂ = argmaxd∈D

∑
c∈[1,C]

〈Sc, dc〉
2.

In the dictionary update step, the problem can be separated

into C monochannel problems. If the error on each channel is

defined as

Ec = ‖Sc − Π
D

(S)
c

Sc‖
2
2

then we have E =
∑

c Ec with each term Ec only depending

on the shape of the patterns on channel c. Thus the dictio-

nary can be optimized independently on each channel using

the monochannel update step. In shift-invariant K-SVD, this
update step roughly consists in extracting patches from the

signal where one pattern was found by the decomposition,

then setting their principal component as the new pattern [4].

As there is much inter-patient variability in the VA wave-

forms, the VA dictionary cannot be learnt on other patients’

ECG, rather on the mixture itself. However, trying to learn

a dictionary on the mixture does not result in two separate

dictionaries with clearly identifiable patterns as VA or AA,

rather to a dictionary where each pattern is a mixture itself.

This problem was already observed when performing ABS

[1]: very few templates (often only 1) can be learnt without

having them corrupted with atrial interference on the leads

with strong atrial energy (typically V1). We propose an alter-

nate learning scheme to overcome it.

3.2. Alternate learning scheme

The main hypothesis behind the ABS approach is that VA and

AA are decorrelated during fibrillation, so if one computes an

average of all heart beats in the mixture, the AA components

will cancel each other out. In the dictionary learning frame-

work, a 1 pattern dictionary learnt from the mixture will con-

tain a clean ventricular pattern.

Our learning scheme consists in extending this idea to atrial

modelling. We first learn a 1 pattern VA dictionary on the sig-

nal, then subtract it from the mixture to get a rough estimate

of AA (this first step is nothing but an ABS). Then, a 1 pattern

dictionary learnt from this estimated AA. This pattern is sub-

tracted from the signal and a more accurate (i.e. with more
patterns) VA dictionary can be learnt on the obtained VA esti-

mate. We iterate the scheme, each dictionary being learnt on

the result of a previous cancellation and the number of pat-

terns keeping increasing. This global algorithm is described

in 1.
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Algorithm 1 (DV A,DAA) = alternateLearn(S)

VA = S

for dictSize = 1 to maxSize do
(DV A, V A) = K-SVD(V A, dictSize)
AA = S − V A

(DAA, AA) = K-SVD(AA, dictSize)
V A = S − AA

end for

3.3. Atrial pattern post-processing

Due to the shape of VA, most of the residual ventricular in-

terference after cancellation tends to be localized in spikes at

the QRS wave. As the VA energy is much higher than AA’s

in the mixture, these spikes can have a high amplitude in the

estimates AA even if the VA approximation is good. Then

the usual output of dictionary learning on estimated AA is

a mixture of these spikes and the normal oscillatory patterns

we would like to find. To remove these interferences from

the patterns without altering their waveform, a simple spike

removal was applied at each iteration of the AA learning al-

gorithm after dictionary update: the highest amplitude spike

was compressed down to the level of the second highest one.

Negative spikes were processed in the same way.

3.4. Initialization

A priori knowledge can be used to find a good initial guess for
the patterns. A derivative-based method is applied at the be-

ginning of the algorithm to detect ventricular complexes [5],

then at each step the initial VA dictionary is computed using

patches taken from the estimated VA at these positions.

The initial AA dictionary is based on the frequency compo-

nents of the AA. The STFT of the estimated AA is computed

before learning the AA dictionary, and the initial dictionary

is made of Gabor patterns (i.e. windowed sinusoids) at the
frequencies with the most energy in the STFT.

4. EXPERIMENTAL RESULTS

4.1. Database

A three-dimensional model of the human atria was con-

structed frommagnetic resonance (MR) images, including the

openings at the sites of the entries and exits of the vessels as

well as at the locations of the valves connecting the atria to

the ventricles [6]. In order to create substrates for AF, patchy

heterogeneities in action potential duration were introduced

by modifying the local membrane properties. Simulated AFs

induced by rapid pacing in the left atrium appendage were

observed as multiple reentrant wave fronts that propagate and

interact in a random fashion over the atrial surface. Nine dif-

ferent simulated AF types, ranging from 11.3 to 23.9 seconds,

Fig. 1. SDR, SIR and SAR (both in dB) for both ventricular
and auricular estimated activities. As a milestone, the input

ratios bewteen VA and AA signals were 12.3 dB on VR, 11.7

on V1 (the strongest AA) and 17.9 on V4 (the weakest AA).

Lead dictionaries ABS

SDR SIR SAR SDR SIR SAR

VR VA 15.6 24.1 16.7 15.1 24.3 16.1

AA 1.2 23.0 1.4 -0.5 19.2 0.5

V1 VA 16.4 23.3 17.7 16.8 24.6 17.9

AA 3.0 28.4 3.1 1.5 27.9 2.5

V4 VA 20.3 28.9 21.3 19.8 31.5 20.2

AA -1.4 22.2 -1.3 -1.9 21.1 -0.7

were created by modifying the pacing protocol and the hetero-

geneities.

Body surface potentials associated with the AA were com-

puted by using a compartmental torso model constructed from

MR images that includes the atria, the ventricles, blood cav-

ities and the lungs [7]. The nine ECG episodes of simulated

AF were duplicated to cover five minutes. These nine 5-

minute ECGs of simulated AA were combined with two dif-

ferent clinical 5-minute standard 12-lead ECGs of patients in

sinus rhythm, from which the P waves were removed. In this

manner, 18 realistic simulated 5-minute AF signals sampled
at 500 Hz were created in the standard 12-lead ECG.

4.2. Results

The performance measures of our method were the Source to

Distortion Ratio (SDR), Source to Interference Ratio (SIR)

and Source to Artifact Ratio (SAR) criterions for source sep-

aration [8]. The SDR measures the overall distortion between

the estimated source and the original one, no matter where

this distortion comes from. The SIR measures the amount of

the other original sources that is still present in an estimated

source. The SAR measures the amount of artifacts that have

been introduced in the estimated sources by the separation al-

gorithm itself.

Table 1 shows the SDR, SIR and SAR reached on the VR,

V1 and V4 leads, for our method and ABS. The most signif-

icant figure for ventricular cancellation is the AA SDR. Here

dictionary learning brings a gain on all leads, between 0.5 and

1.5 dB. The VA SIR is lower with dictionaries, which might

mean there is still some atrial interference in the ventricular

dictionary. However, the finer model also leads to less arti-

facts in the estimated VA and in all leads except V1, the final

result on the VA SDR is positive.

Figure 2 shows an example of the original and estimated

activities on lead V1. The estimated AA shown here is the

one obtained by cancellation, not the approximation obtained

on the AA dictionary:

AA = S − V A.

467



0 200 400 600 800 1000 1200 1400 1600 1800 2000
−1

−0.5

0

0.5

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−1

−0.5

0

0.5

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−1

−0.5

0

0.5

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−0.2

0

0.2

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−0.2

0

0.2

Fig. 2. Sample of the output of the separation algorithm on
the V1 lead of a synthetic mixture. From top to bottom: in-

put mixture, ground truth and estimated VA, ground truth and

estimated AA.
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Fig. 3. V1 part of the dictionary on figure 2 mixture. The 4
first patterns form the ventricular dictionary, the latter 4 the

atrial one.

The difference is that it also contains the residual that none

of the dictionaries could represent. Some high frequency ar-

tifacts can be observed during the flat zones of AA.

Figure 3 shows the V1 part of dictionary that was learnt on

this mixture. The 4 ventricular patterns do not contain any

visible AA. This is an improvement compared to the ABS

approach: as V1 is the lead with the most AA energy, it is the

one where ventricular patterns are the most likely to contain

atrial interferences. It is also probably the main explanation

for the high observed SIR.

The different VA patterns are very close to each other. This

should not be taken as granted, as it might come from the way

our synthetic signals were generated from the VA of patients

in sinus rhythm. Clinical data seem to present more diversity

in the VA.

5. CONCLUSION

We have presented a new source separation method for the

visualization of ventricular and atrial activities in ECG sig-

nals during atrial fibrillation. Our method is based on sparse

modelling of both the ventricular and atrial signals on learnt

dictionaries. It extends both the ABS and the sparse separa-

tion approaches. It allows the learning of separate atrial and

ventricular dictionaries from the mixture signal. It has been

tested on synthetic data.

Beyond source separation, the atrial model could prove

useful by itself. The dictionary patterns can be seen as a sum-

mary of the AA. Instead of cancelling the VA, then look back

into the estimated AA for information, some interesting fea-

tures might be computable directly on the patterns.
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