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ABSTRACT

Partial directed coherence (PDC) has recently been proposed for
studying brain connectivity in EEG studies. PDC provides a quan-
titative spectral measure of the causal relations between signals by
its central use of a multivariate autoregressive (mAR) model. Yet, in
real applications, the successful estimation of PDC depends on the
accuracy of mAR parameter estimation, which is often sensitive to
the data size and model order. In addition, it is generally believed
that connections between EEG nodes (brain regions) may be sparse.
To address these concerns, we propose a sparse mAR-based PDC
technique where PDC estimates are computed from sparse mAR co-
efficient matrices derived from penalized regression. The proposed
technique is applied to both simulated data and real EEG recordings,
and results show enhanced stability and accuracy of the proposed
technique compared to the traditional, non-sparse approach. The
sparse mAR-based PDC technique is promising for analyzing brain
connectivity in EEG analysis.

Index Terms— Partial directed coherence (PDC), sparse mul-
tivariate autoregressive (mAR) model, EEG, penalized regression,
brain connectivity.

1. INTRODUCTION

In neurobiology, there has been increasing interest in identifying
functional connectivity between brain regions. Such connectivity
is believed to provide an integrating framework for a variety of
complex brain functions. Several mathematical methods have been
explored in the literature to provide a quantitative measure of brain
connectivity using electroencephalography (EEG) data, including
correlation, coherence and Granger causality [1, 2]. Among them,
spectral coherence, probably the most popular one, has been used
extensively in EEG studies to investigate issues such as cortical
synchrony during cognitive tasks and disrupted brain connectivity in
pathological conditions. However, coherence technique has several
limitations. First, it is a bivariate technique, meaning that only two
signals are considered at a time. Yet, in most cognitive tasks, large
number of brain regions are simultaneously interacting with each
other. By doing pairwise analysis, coherence technique ignores
possible critical influences by other brain regions and thus may lead
to misleading results. Moreover, coherence is unable to identify
the direction of information flow between cortical regions. Another
recently proposed technique of neurobiological interest is Granger
causality, as it provides a measure of causal relation between two
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time series, but similar to coherence, Granger causality also only al-
lows multiple pairwise analyses when considering the multichannel
case [2].

To overcome these limitations, partial directed coherence (PDC)
was later proposed for EEG connectivity studies, which extends the
concepts of coherence and Granger causality to process multiple
time series simultaneously. The PDC technique has the advantage
of allowing the simultaneous modeling of all channels with a mul-
tivariate autoregressive (mAR) model, which gives a more accurate
estimation of causality than a bivariate technique. PDC also allows
the differentiation of direct and indirect causal influences among
interacting entities. Moreover, since neural signals often exhibit
frequency-specific oscillatory activity, the ability of providing spec-
tral information of causal relations makes PDC an attractive tool for
neuroscience studies. Examples of applications of PDC to real data
include the study of brain networks in rats during different behav-
ioral states [3] and the identification of oscillatory brain interactions
in human during object recognition [4].

However, the computation of PDC in real applications poses
technical challenges. As noted in [1], the successful estimation of
PDC depends both on the proper fitting of the mAR model to the data
and also the accuracy of the specific parameter estimations, which
are dependent upon optimal mAR model order selection and ade-
quate sample sizes of training data. In general, a higher model order
allows more data dynamics to be captured and gives a higher fre-
quency resolution, but at the expense of a greater number of param-
eters to be estimated. More parameter estimations may create sta-
tistical instability for ordinary maximum likelihood estimators when
only limited observations are available [5]. Thus, it is of critical im-
portance in practice to make a good trade-off between model com-
plexity and estimation accuracy. In addition, the underlying implicit
full connection assumption in a regular mAR model used for PDC
is questionable in EEG connectivity analysis, especially when the
effects of volume conduction, which may erroneously suggest con-
nections between channels, are account for. In other words, the con-
nections between EEG nodes (or brain regions) may be considered a
priori to form a sparse network.

The above observations motivate us to incorporate a sparse mAR
model into the current PDC technique. In an effort to resolve a simi-
lar concern in functional Magnetic Resonance Imaging (fMRI) stud-
ies, Valdés-Sosa et al. [5] proposed modeling fMRI data using sparse
mAR models in which the parameters are estimated using penalized
regression. By using penalized regression, many regression coeffi-
cients are shrunk to zero during the estimation process. The resulting
mAR coefficient matrix will thus have sparse structures, meaning
that only small number of elements are non-zero. In this paper, we
propose the sparse mAR-based PDC technique in which PDC esti-
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mates are computed using sparse mAR coefficient matrices given by
penalized regression. Penalized regression effectively reduces the
number of free parameters to be estimated, which is particularly im-
portant when the data is of limited sample size. We evaluate the per-
formance of the proposed approach using both simulated data and
real EEG data.

This paper is organized as follows: in Section 2, we will describe
the regular and sparse mAR models and the parameter estimation
techniques. The PDC estimate is defined in Section 2.2. In Section 3,
the performance of regular mAR- and sparse mAR-based PDC will
be compared. Finally, we conclude in Section 4.

2. METHODS

We first review regular multivariate autoregressive models and least
square-based parameter estimation techniques. We then introduce
the concept of sparse mAR and present penalized regression meth-
ods for solving such sparse problems. Finally, the definition of par-
tial directed coherence is given in Section 2.2.

2.1. Sparse mAR Model

In a regular mAR model, the multivariate time series at each time
point is represented as a linear, weighted sum of its previous time
points, and it can be formulated as

yyy(t) =

pX
r=1

AAAryyy(t − r) + eee(t), (1)

where the observation yyy(t) is a d-dimensional vector at time t, p de-
notes the order of mAR model, and the vector eee(t) represents white
Gaussian noise. The mAR coefficient AAAr is a d × d matrix, where
the element Ar(i, j) measures the influence that variable j exerts on
variable i after r time points. In the regression framework, Eqn. 1
can be rewritten as

ZZZ = XXXβββ + EEE (2)

where

ZZZ = YYY p+1:N

=
ˆ
yyy(p + 1), yyy(p + 2), . . . , yyy(N)

˜T
,

XXX =
ˆ
YYY p:N−1, YYY p−1:N−2, . . . , YYY 1:N−p

˜
,

βββ =
ˆ
AAA1, AAA2, . . . , AAAp

˜T
,

EEE =
ˆ
eee(p + 1), eee(p + 2), . . . , eee(N)

˜T
.

Eqn. 2 can be solved using the maximum likelihood (ML) ap-
proach. Under the iid white noise assumption of EEE, this is equivalent
to minimizing the mean square error:

bβββ = arg min
βββ

‖ (ZZZ −XXXβββ) ‖2. (3)

It is worth emphasizing that the performance of the ML esti-
mator is highly dependent on the sample size N and the number of
parameters to be estimated. In real world applications, the available
data points are often limited, which in turn leads to poor estima-
tion accuracy. Furthermore, the estimated coefficients yielded by the
least square (LS) approach in Eqn. 3 are typically non-zero, which
makes neurobiological interpretation of results difficult (e.g. iden-
tifying brain connectivity patterns in EEG studies). Such non-zero
observation is also against the sparsity assumption in brain connec-
tivity networks.

To address these issues, a possible solution is to impose spar-
sity constraint on the mAR coefficients (i.e. AAAr matrix) and perform
variable selection using penalized regression methods [5]. The basic
idea of penalized regression is to maximize the likelihood while at
the same time, penalize complex models. In terms of mathematical
formulation, penalized regression can be expressed as the minimiza-
tion of the penalized least square function:

bβββ = arg min
βββ

‖ (ZZZ −XXXβββ) ‖2 + λ2
dX

j=1

p(|βj |), (4)

where λ is the regularization parameter which controls the amount of
penalization imposed on the solution and it can be determined using
Bayesian information criterion (BIC). p(|βj |) is the penalty function
applied to each regression coefficient. Several different penalty func-
tions have been introduced, including ridge , LASSO and SCAD. An
overview of these penalty functions can be found in [6]. In this paper,
LASSO penalization, p(|βj |) = |βj |, is chosen because of its abil-
ity to automatically set small estimated coefficients to zero, which
naturally result in sparse solution. This special property, also known
as the sparsity property, is particularly useful in variable selection
problems.

To solve the optimization problem in Eqn. 4, the technique
we use is the Local Quadratic Approximation (LQA) algorithm,
proposed by Fan and Li [6]. LQA first casts the problem of penal-
ized least square minimization presented in Eqn. 4 into a penalized
likelihood maximization problem. It further addresses the issue
of singularity at the origin that exists in penalty functions such
as LASSO and SCAD by locally approximating p(|βj |) with a
quadratic function. The resulting penalized likelihood function be-
comes both differentiable and concave, and it can easily solved using
Newton-Raphson optimization algorithm. A detailed description of
the LQA algorithm can be found in [6].

2.2. Partial Directed Coherence

PDC can be considered as the frequency-domain representation of
Granger causality. It involves the transformation of the mAR coeffi-
cients in Eqn. 2 into the frequency domain via the Fourier transform

AAA(f) = III −
pX

r=1

AAAre
−i2πfr, (5)

where III is a d × d identity matrix. The estimate of PDC from the
node yi to the node yj is defined as

πyj←yi(f) =
Aj,i(f)qPd

m=1 |Am,i(f)|2
. (6)

PDC takes on a value between 0 and 1. It essentially measures the
relative interaction strengths with respect to a given source signal.
The PDC πyj←yi(f) describes the linear pairwise relatedness be-
tween yi and yj as a function of frequency after discounting the ef-
fect of other simultaneously observed series.

3. RESULTS

In this section, we will first examine the PDC results produced by
sparse mAR models and by regular mAR models when fitted to sim-
ulated data. Next, we will present a case study where the proposed
sparse mAR-based PDC is applied to real EEG data collected from
an motor task where visual stimuli were presented in a virtual envi-
ronment.
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Fig. 1. PDC from Simulated Data

3.1. Simulated Data

To compare the PDC estimates produced by sparse mAR models and
by regular mAR models, a 18-channel, second-order (i.e. p = 2)
mAR system is simulated. The noise term eee(t) is white Gaussian
noise with zero-mean and unit variance, and the data length is set to
3,000 points. Note that such a short data length is purposely chosen
as to illustrate the effects of estimation errors in mAR coefficients
on PDC values. The mAR coefficient matrices are 18 × 18 sparse
matrices whose non-zero elements are given by

A1(2, 13) = 0.95
√

2, A2(1, 1) = −0.9025,
A1(2, 1) = −0.5, A2(3, 2) = 0.4,

A1(10, 13) = −0.5, A2(16, 18) = −0.2,

A1(13, 14) = 0.25
√

2, A2(4, 16) = 0.7,

A1(10, 2) = 0.25
√

2,

A1(5, 4) = −0.25
√

2,

A1(5, 5) = 0.25
√

2.

To investigate the effects of model order estimates (i.e. choice of
p in Eqn. 2) on PDC, regular and sparse mAR models of order 2, 5,
7 and 10 are fitted to the simulated data. The resulting PDC curves
of selected connections are plotted in Fig. 1. We first demonstrate
an example by looking at the PDC from channel 18 to channel 12
as shown in Fig. 1(a). Given that A1(12, 18) = A2(12, 18) = 0,
the true PDC is π12←18(f) = 0, indicating the absence of direct
causal influence from channel 18 to channel 12. When the PDC is
calculated based on AAAr given by the sparse mAR models, regardless
of the choice of model order, the estimated PDC curves (lines with
crosses as markers) are exactly the same as the true PDC (line with
squares) at all frequencies, except when p = 10, the estimated PDC
is slightly greater than zero (π12←18(f) ∼ 0.007). On the other
hand, the estimated PDC given by regular mAR (lines with circles)
noticeably deviates from the true PDC and the deviation increases as
the model order increases. When statistical tests are applied, the es-
timated PDC given by regular mAR is highly likely to be considered
statistically significant, even though there is no causal influence from
Y18 to Y12 in the true model. Similar observations are also noted in
other connections. This ultimately results in falsely identified con-
nectivity patterns.

One non-zero connectivity example we look at is from channel
13 to channel 2. In this case, as shown in Fig. 1(b), the true PDC

π2←13 takes on the value of 0.769 at all frequencies. The sparse
mAR-based PDC estimates provide very close approximation to the
true values and the deviations are around 0.01 for all model orders.
In the case of regular mAR, similar to the connection from Y18 to
Y12, the PDC estimates differ from the true PDC considerably. One
observation worth pointing out is that, when p = 10, the traditional
PDC estimate fluctuates substantially across considered frequencies.
This artifact arises from the estimation errors incurred when highly
complex mAR models are trained by limited data points, and it may
lead to misleading interpretations of spectral properties of the under-
lying system.

3.2. Case Study: EEG Analysis

Next, we apply the proposed technique to the EEG data collected
from a virtual reality experiment. In this experiment, 7 healthy
subjects were recruited and asked to respond to visual stimuli in
a computer-simulated virtual environment. The stimuli consists of
150 virtual balls that were sequentially launched and loomed directly
towards the subject. Among these 150 balls, 50% of the balls were
distracter balls and the other 50% are target balls. The distracter
balls remained white in color during the course of their trajectory
whereas the target balls were initially launched as distracter balls
(i.e. white in color) and after approximately 1.5 seconds, the target
balls revealed itself by changing color from white to blue. Subjects
were instructed to ignore distracter balls and reach out to block
target balls with a virtual paddle as soon as they turned blue.

To record the brain activity, subjects were fitted with an EEG
cap with 18 active channels placed according to the international 10-
20 placement systems. The placement of the electrodes is shown
in Fig. 2, and they are, starting from the top left corner, FP1, FP2,
F7, F3, FZ, F4, F8, T7, C3, CZ, C4, T8, P7, P3, PZ, P4, O1 and
O2. Two additional electrodes were placed above and below the eye
for detecting eye-movement artifacts. EEG signals were recorded
using the SynAmps2 amplifier and Scan4 software (NeuroScan�,
Compumedics�, Texas, USA). The data were digitally sampled at
1000Hz and later downsampled to 250Hz. To eliminate eye arti-
facts, Independent Component Analysis (ICA) was applied to the
EEG recordings using the procedure described by Jung et al. in [7].
The denoised data were bandpassed between 5-100Hz.

For the analysis, only EEG signals collected during the course
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(a) Regular mAR Model
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Fig. 2. Head plots showing significant connections in Gamma band
(36-60Hz). (a) Significant connections as determined by t-test on
�PDCregular (b) Significant connections as determined by t-test
on �PDCsparse

of successfully blocked target balls are used. Moreover, for each tar-
get ball, the EEG signals are segmented into two parts: pre-reveal
period, which is between the time the target was launched and the
time the target revealed itself, and post-reveal period, which is be-
tween the time the target revealed itself and the time the target was
blocked by the subject. Third order regular mAR models and third
order sparse mAR models are separately fitted to the pre-reveal pe-
riod and post-reveal period. PDC values are calculated based on the
estimated mAR coefficients. To study the effects of ball launch, PDC
values from pre-reveal period is subtracted from pre-reveal period.
Let �PDCregular and �PDCsparse denote the PDC differences
given by regular mAR and sparse mAR, respectively. Student t-tests
are separately applied to �PDCregular and �PDCsparse, and the
significant connections are shown in Fig. 2. The �PDCsparse re-
sults are consistent with demonstrating frontal gamma synchroniza-
tion in the frontal area of cortex in response to complex visual stim-
uli requiring interpretation [8]. In particular, the �PDCregular and
�PDCsparse curves for the connection from F7 to FZ, which is
shared by both regular mAR and sparse mAR models, is shown in
Fig. 3. The midline of the �PDCsparse curves are more consistent
across subjects, as shown by the standard deviation in Fig. 3.

4. CONCLUSION

The proposed sparse MAR-based PDC estimates are shown to be
more accurate and consistent in simulations. In a real EEG study,
the results from the sparse MAR-based PDC approach were consis-
tent with prior studies emphasizing frontal gamma oscillations. Our
results suggest that when the number of data points are limited as
often the case in real word applications, the sparse MAR-based PDC
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Fig. 3. �PDCregular and �PDCsparse curves for the connection
from F7 to Fz. The vertical lines represent the standard deviation.
The two vertical dashed lines delimit the Gamma frequency band
which ranges from 36 to 60Hz.

formulation is more suitable for real EEG analysis by accommo-
dating the sparse nature of brain connectivity network and naturally
addressing the concern of model order selection, and that PDC re-
sults based on the regular MAR approach should be interpreted with
caution.
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