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ABSTRACT 

In this paper, a novel spectrum separation technique based 
on sparse representation is proposed to deal with Magnetic 
Resonance Spectroscopy (MRS) quantification which is 
used to measure the levels of different metabolites in brain 
tissues. Since a measured MR spectrum contains the spectra 
of numbers of metabolites and a baseline, the separation and 
quantification of them becomes difficult. A nonnegative 
pursuit algorithm based on regularized FOCUSS algorithm 
is proposed here to decompose a measured spectrum with 
respect to an overcomplete dictionary. Benefitting from the 
a priori knowledge, the dictionary is built by Lorentzian and 
Gaussian basis functions representing different metabolites 
and baseline. Using this algorithm, not only the baseline is 
separated from the spectra of interest, but also the spectra of 
different metabolites are separated. The accuracy of 
quantification and the robustness are improved, from 
simulation data, compared with a commonly used estimation 
method [1]. The quantification on tumor metabolism with in 
vivo brain MR spectra is also demonstrated.  

Index Terms—Magnetic resonance spectroscopy 
(MRS), spectrum separation, quantification, sparse 
representation 

1. INTRODUCTION 

The MRS signal produces a spectrum of resonances that 
correspond to different molecular arrangements of the 
isotope being "excited" [2]. A measured MR spectrum is 
composed by the spectra of several individual metabolites, 
and the concentration of each metabolite is proportional to 
its respective peak area. Accurate quantification of in vivo 
MR spectra (measuring peak areas) is very important to 
diagnose certain metabolic disorders, especially those 
affecting the brain. However, some serious problems make 
the task difficult: strongly overlapping metabolite peaks, 
poor knowledge about background (the baseline) originating 
mainly from macromolecules and lipids, and low signal-to-
noise ratio (SNR) [3]. Several MRS quantification 
approaches have been proposed, such as AMARES [4], 
LCModel [5], semi-parametric QUEST [6], AQSES [7]. 

Generally, most of these approaches can be described as 
applying numbers of nonlinear optimization algorithms to 
estimate the parameters of a mathematical model which is 
used to characterize MR spectra. However, the problems 
mentioned above still affect the accuracy of the 
quantification of MR spectra.  

Sparse representation of signals has received a great 
deal of attention in signal processing region in recent years 
[8]. A signal sparse representation problem can be described 
as sparsely representing a signal with the linear combination 
of several basis functions in an overcomplete dictionary.  

In this paper, sparse representation is used for the 
separation of MR spectra. With the a priori knowledge 
about MRS data, an overcomplete dictionary with a series of 
Lorentzian and Gaussian basis functions is firstly built to 
represent the spectra of different metabolites and the 
baseline. A nonnegative pursuit algorithm, based on 
regularized FOCUSS (Focal Underdetermined System 
Solver) algorithm [9], is then proposed to decompose a 
measured MR spectrum to the dictionary and finally 
separate the different spectra of metabolites and the 
baseline. As the dictionary benefits maximally the priori 
knowledge, the baseline problem can be well dealt with and 
the bad influence of noisy and the severe overlap of spectral 
lines can be decreased. The proposed method is tested with 
simulated data, as well as real MR spectra. The robustness 
and accuracy of the method are demonstrated by comparing 
with a commonly used nonlinear fitting algorithm [1]. 

2. THEORY AND METHOD 

2.1. Signal model 

Generally, a mixture of Lorentzian and Gaussian functions 
( , )S f p  is used to model MR Spectra [10]. The 

mathematical model can be expressed in the following form: 
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where kL and kG denote Lorentzian and Gaussian functions 
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respectively, f  is the frequency of each data point and 
K stands for the number of lines used to build up the 
spectrum. , , , , ,k Lk Lk Lk Gk Gk Gka d f a d fp  is a model 
parameter vector,  where a is the intensity,  d the linewidth, 
f  the central frequency. When a possible baseline 

contribution B  and noise e  which is often assumed as 
Gaussian distributed are considered, a measured MR 
spectrum can be modelled as 

1
( , ) ( ) ( ) ( )

N

k k
k

S f L f G f fp B e            (2)    

2.2. Method 
                                
In most of MRS quantification approaches, quantification 
can be achieved by using the Levenberg–Marquardt 
algorithm which is a sophisticated nonlinear least-squares 
algorithm to estimate the nonlinear parameter vector p in 
the presence of baseline B  and noise e [10]. This kind of 
nonlinear parametric estimation methods has nontrivial 
requirement for the accurate parametric description of the 
signal and with the increase of the number of model 
parameters the accuracy of the estimation result reduces, 
besides, the performance of these methods deteriorates 
seriously with the presence of noise and baseline. The 
method proposed in this paper makes use of a linear 
nonparametric estimation algorithm to cope with the 
shortcomings.  

Firstly, an overcomplete dictionary N MD  which 
contains M basis functions is constructed. ‘Overcomplete’ 
means that M N , where N is the length of a MRS signal. 
Normalized Lorentzian and Gaussian function with different 
linewidths and central frequencies are used as basis 
functions. In this way, refer to the signal model (1) the 
spectrum of single metabolite can be represented by one or 
several basis functions with a certain central frequency 
(known a priori). For taking into account the baseline 
contribution B , some basis functions which can linearly 
represent the background spectra are also contained in the 
dictionary. In 1H MRS the baseline typically includes 
contributions from unresolved proteins, polypeptides, 
residual water and subcutaneous lipids and baseline is 
usually much smoother than the spectra of metabolites of 
interest [6]. Therefore, in general Lorentzian and Gaussian 
functions with bigger linewidths are supposed to model 
baseline [6] and here they are contained in the dictionary. 
According to the central frequencies and the ranges of 
linewidth, we classify the dictionary into several 
groups 1 2 1{ , , , , }K KD D D D . iD ( 1,2, ,i K ) is 
composed of the basis functions with the same central 
frequency but different linewidths to represent metabolite 
spectra of interest, while 1KD contains the basis functions 
with bigger linewidths to represent baseline.  If we can find 

x  which is the solution of 
1

P

i i
i

y = Dx D x , where 1Ny is

a measured MR spectrum, then we can decompose the 
spectrum into several components which relate to spectra of 
different metabolites and baseline respectively.  

However, if only a single observed MR spectrum is 
available, the problem of finding x is an underdetermined 
problem, infinitely many solutions exist and additional 
criteria must be used to select a unique estimation. As most 
of the underdetermined problems, the sparsity constraint is 
available as a priori selection criterion in the problem. For 
getting exact determination of sparsest representations, in 
the past decade several efficient pursuit algorithms for 
getting  the sparsest representation have been proposed, 
such as matching pursuit (MP),  the orthogonal matching 
pursuit (OMP), basis pursuit (BP), focal underdetermined 
system solver (FOCUSS) and other extensive studies of 
these algorithms [8]. Regularized FOCUSS algorithm in [9] 
which is a recursive algorithm to find the localized energy 
solution, has good performance in noisy environments. 
Considering the exist of noise in the measured MR spectra 
and the nonnegative character of x , a nonnegative pursuit 
algorithm based on the regularized FOCUSS algorithm is 
proposed in this paper to find the solution x .

2.3. Optimization 

Theoretically, the sparsest representation of y  in an 
overcomplete dictionary D is the following optimization 
problem: 

0min || ||   subject to  
x

x y Dx                       (3)   

or 0 2min || ||   subject to  || ||
x

x y Dx                (4)                     

where 0|| ||  is the 0l  norm, and counting the nonzero entries 
of a vector; 1Mx is the coefficient vector of basis functions. 
However, it is a NP-hard problem [8]. Thus, approximate 
solutions are considered instead, the regularized FOCUSS 
minimize ( 1)pl  norm in place of  0l  norm to obtain sparse 
solution. Then, the sparse representation becomes the 
solution of  

=1
min sgn( ) ( )   subject to  

M
p

i

p x i
x

y Dx        (5)                     

When the noise exists, an exact minimum norm solution of 
(5) can not be sought. Instead, a solution that minimizes 

( 1)pl  norm and approximately satisfies the set of constraints 
is found. The solution is:  

2 ( )arg min ( )  where ( ) E ( )p

x
J Jx x x Dx - y x    (6)                     

For the problem in this paper, the basis functions in D  and 
the MR spectrum y  are nonnegative, so the coefficient 
vector must be nonnegative. Then, a nonnegative constraint 
is added to (6), and the nonnegative sparse representation is 

454



given by  

=1
min sgn( ) ( )   subject to   and : 0
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i
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p x i i x
x

y Dx (7)                                

At each iteration step, we set the negative values of the 
solution to zero for guaranteeing the nonnegative character 
of coefficient vector x . Based on the basic iterative form of 
the regularized FOCUSS algorithm, the iterative form of the 
nonnegative pursuit algorithm used in the paper is as follow: 
(a)    1 ( /2)
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The parameter  controls the trade-off between quality of 
fit y Dx and the degree of sparsity, and the value of 
should increase with the level of noise. 

When the solution of x  is obtained, we can compute 
spectra of each metabolite and baseline by computing i iD x .
In this way, spectra of different metabolites and baseline can 
be separated. By computing the peak area of separated 
spectra of interest, the quantification can be achieved. 

3. EVALUATION AND RESULT 

3.1. Evaluation with simulated spectra 

The approach was first tested with simulated 1H human 
brain MRS signals. Each simulated spectrum with 512 data 
points is composed of eleven main metabolite spectra 
modelled as Gaussian functions, a baseline mixing of nine 
models and various levels of Gaussian noise. The 
parameters of the main metabolite spectra and the baseline 
are summarized in Tab.1. For each noise level, a set of 100 
MR spectra was created in order to give reliable values for 
the uncertainties in the estimation result and check the 
robustness of the method. The value of the SNR is set as the 
ratio of the amplitude of the NAA resonance to the standard 
deviation of noise e .

 As an a priori knowledge, the basis functions 
supposed to represent spectra of main metabolites have the 
same central frequency with main metabolite spectra, see 
Tab.1, and the linewidths taken from the range 1 2[ , ]d d  with 
the sample step 1d . Because there is no a priori knowledge 
about the baseline, the basis functions, with the central 
frequencies and the linewidths taken from the range 1 2[ , ]f f
with a desired sample step f  and the range 3 4[ , ]d d  with a 
desired sample step 2d  respectively, are designed to 
represent baseline. For the simulated 1H MR spectrum, the 
parameters 1 2 1 2 1 3 4 2, , , , , , , ,f d df f d d d d  are respectively 
set as 0, 400, 5, 1, 10, 0.5, 50, 350, 10.

Fig.1 plots the RRMSE (Relative Root Mean Square 
Error) of estimated metabolite peak areas in different noise 

levels to show the robustness. RRMSE is defined as the 
ratio of RMSE (Root Mean Square Error) of estimated 
result to the real data. As demonstrated in Fig.1, the 
quantification accuracy does not deteriorate with the 
increase of noise and the quantification results stay very 
reliable for the metabolites with big peak amplitudes. Fig.2 
displays the simulated MR spectra with the SNR=17dB as in 
vivo conditions, and the corresponding separation results. 
The comparison of separation results and true spectra in 
Fig.2 shows that baseline was well separated from spectra of 
interest.  

Tab.1 The parameter values of the simulated spectra of twelve 
metabolites and the simulated baseline. 

Spectra parameters Baseline parameters 

Metabolite kf
(ppm) kd ka k kf

(ppm)
kd ka

Cr 3.91 8.0 8.0 1G 2.02 85 2.33 
Glu/ Gln 3.74 4.0 4.0 2G 2.35 100 0.33 
mI 3.56 4.0 5.5 3G 2.50 70 0.67 
Tau 3.42 3.0 3.2 4G 3.00 70 0.67 
Cho 3.22 6.0 2.0 5G 3.29 100 1.00 
Cr/PCr 3.03 6.0 4.0 6G 3.50 80 2.00 
GABA 2.37 4.0 1.5 7G 4.00 70 0.67 
Glu/ Gln 2.12 6.0 9.5 8L 0.90 300 1.33 
NAA 2.02 5.0 13.0 9L 1.30 300 1.67 
Lac 1.33 5.0 1.5 
Lac 1.26 3.0 1.5 

G Gaussian model. L Lorentzian model 

3.2. Comparison 

Using simulated MR spectra with SNR=17dB, the method 
in this paper is compared with the commonly used 
frequency-domain MRS quantification method in which 
Levenberg–Marquardt algorithm is used to estimate the 
nonlinear model parameters of metabolite spectra and a 
wavelet filter is used to remove the baseline component in 
an iterative subtraction manner [1]. As for the nonlinear 
method, the choice of the initial parameters can deeply 
influence the estimation result and in simulation experiment, 
we use the same prior knowledge in the two methods. The 
RRMSE of the estimated metabolite peak areas and the error 
bars in both of the methods are computed, see Fig.3. The 
comparison shows the superiority of our method.   
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Fig.1 The RRMSE of  estimated metabolite peak areas in different 
noise levels. 
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Fig.2 Separation results of a simulated MR spectrum (SNR=17dB). 
(a) raw spectrum; (b) the estimated and the true baseline (dashed 
line); (c) the estimated and the true spectra (dashed line). 
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Fig.3 Comparison results. The RRMSE of estimated metabolite 
peak areas and the error bars in nonlinear method in [1] and the 
proposed method (SNR =17dB).  

3.3. Real MRS data 

The method was also tested on in vivo 1H human brain MR 
spectra. Human brain MR spectra from a brain tumor patient 
obtained with PRESS and an echo-time of 35 ms were 
quantified by our method. Fig.4 (a) and Fig.4 (b) represent 
the MR spectra of normal tissue and tumor tissue 
respectively. Fig.4 (c) and Fig.4 (d) show the separation 
results of the baseline and the spectra of interest. According 
to the spectrum separation result, the peak areas of the 
spectra of main metabolites were computed and the 
difference of the peak areas of Lac in the two MR spectra 
shows the type of the cancer which is identical with the 
diagnoses of doctor.  

4 CONCLUSIONS 

The new MRS quantification method proposed in the paper 
uses a linear nonparametric algorithm based on sparse 
representation to separate different spectra of interest and 
baseline, and realize the quantification of MRS signals. The 
method well deals with the challenging baseline problem, 
effectively uses the prior knowledge and can achieve a 
satisfied accurate estimation.  Additionally, compared with 
commonly used nonlinear parametric algorithm, the 
quantification results are more stable and the choice of 
initial parameters in the method has less influence on the 
final result. In the future work we will work at finding a 

more general dictionary design method and ameliorate 
pursuit algorithm for achieving more accurate and robust 
quantification.  
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Fig.4 The separation results of in vivo 1H human brain MR spectra. 
(a) spectrum from normal tissue; (b) spectrum from tumor tissue; 
(c) separation results of the spectrum in (a); (d) separation results 
of the spectrum in (b) (BL=baseline, MSI =spectra of interest). 
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