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ABSTRACT

In this paper, a novel statistical parcellation of intra-subject func-
tional MRI (fMRI) data is proposed. The key idea is to identify func-
tionally homogenous regions of interest from their hemodynamic
parameters. To this end, a non-parametric voxel-based estimation
of hemodynamic response function is performed as a prerequisite.
Then, the extracted hemodynamic features are entered as the input
data of a Multivariate Spatial Gaussian Mixture Model (MSGMM)
to be fitted. The goal of the spatial aspect is to favor the recovery
of connected components in the mixture. Our statistical clustering
approach is original in the sense that it extends existing works done
on univariate spatially regularized Gaussian mixtures [1]. A specific
Gibbs sampler is derived to account for different covariance struc-
tures in the feature space. On realistic artificial fMRI datasets, it is
shown that our algorithm is helpful for identifying a parsimonious
functional parcellation required in the context of joint detection-
estimation of brain activity [2]. This allows us to overcome the clas-
sical assumption of spatial stationarity of the BOLD signal model.

Index Terms— multivariate Gaussian mixture model, spatial reg-
ularization, functional MRI, statistical clustering.

1. INTRODUCTION

Intra-subject analysis in fMRI is usually addressed using a hypothesis-
driven approach that actually postulates a model for the Hemody-
namic Response Function (HRF) and enables voxelwise inference
in the General Linear Model (GLM) framework. In this formula-
tion, the modeling of the BOLD response is crucial. In its simplest
form, this modeling relies on a spatially invariant canonical HRF
reflecting the BOLD signal best in the visual cortex [3]. However,
intra-individual differences in the characteristics of the HRF have
been exhibited between cortical areas in [4, 5]. This regional vari-
ability is large enough to be regarded with care. To account for these
spatial fluctuations at the voxel level, one usually resorts to a hemo-
dynamic function basis. For instance, the canonical HRF can be
supplemented with its first and second derivatives to model differ-
ences in time [6]. Although powerful and elegant, the price to be
paid for such a flexible modeling lies in a loss of sensitivity of detec-
tion. To facilitate cognitive interpretations, spatially adaptive GLMs
in which a local non-parametric estimation of the HRF is performed,
have been proposed in [2, 7]. The expected BOLD response is thus
factorized with a single regressor making direct statistical compar-
isons between response magnitudes easier. Early investigations have
shown that this joint detection-estimation framework of brain activ-
ity over functionally homogeneous Regions-Of-Interest (ROIs) pro-
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vides more reliable results [2]. The critical issue is to exhibit such
ROIs over the whole brain. To that end, several parcellation algo-
rithms have been proposed [8, 9], which segregate the brain into
connected and functionally homogeneous regions by minimizing a
criterion reflecting both the spatial and functional structures of the
dataset. The functional part of this criterion is usually computed
from regression coefficients estimated by fitting a GLM.

The goal of the present paper is to avoid fitting a GLM for
the definition of the parcellation. To this end, we propose a two-
step procedure. As shown in Section 2, it first consists in extract-
ing Hemodynamic Parameters (HP) from non-parametric HRF esti-
mates computed as temporally regularized impulse responses [10].
Second, these voxel-based hemodynamic parameters (e.g., time-to-
peak (TTP), time-to-undershoot (TTU), peak magnitude (PM), un-
dershoot magnitude (UM), ...) are entered as input multivariate data-
sets in a statistical clustering algorithm based upon a MSGMM, as
explained in Section 3. A Gibbs sampler is developed for estimating
the mixture parameters and identifying the clusters. It extends previ-
ous works performed on spatially correlated univariate mixtures [1].
Our approach is validated on synthetic fMRI dataset in Section 4 and
conclusions are drawn in Section 5.

2. EXTRACTION OF HEMODYNAMIC PARAMETERS

Let (V1, . . . , VJ) be the set of voxels covering the brain at the func-
tional spatial resolution. To voxel Vj is associated a fMRI signal
yj ∈ �N where N is the scan number. The following linear model
is used to extract the voxel-based HRFs:

yj = Xhj + P �j + bj , (1)

where hj ∈ R
K+1 denotes the HRF shape, X ∈ R

N × R
K+1 is

the binary onset matrix coding the stimulus occurences and P ∈
R

N × R
Q a orthogonal basis against which the low frequency trend

�j ∈ R
Q is fitted. Noise bj ∈ R

N is assumed to be N (0, σ2
j IN )-

distributed. The session likelihood thus reads:

p(yj |hj , �j , σ
2
j ) ∝ σ−N

j exp
`−||yj −Xhj − P �j ||2/2σ2

j

´
.

Akin to [10], prior information is introduced on hj by setting the
first and last parameters of hj to zero and considering an a priori
Gaussian probability density function (pdf) N (0, σ2

hR) with R =
(Dt

2D2)
−1 and D2 stands for a discrete approximation of the sec-

ond order derivative. The Maximum a posteriori estimate is then
derived from the combination of the likelihood with the prior den-

sity using Bayes’ rule: p(hj |yj , �j , θj) ∼ N (bhMAP
j ,Ωj), where

Ω−1
j = σ−2

j X tX+σ−2
h R−1 and bhMAP

j = ΩjX
t
`
yj−Pb�j

´
/σ2

j .
An Expectation-Maximization algorithm gives us the simultaneous
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estimates of hj , �j and θj = (σ2
j , σ2

h).

3. MULTIVARIATE GAUSSIAN MIXTURE MODELS

3.1. The mixture sampling model

Let yj ∈ �n be now the feature vector to be clustered such that n <
N and n typically describes hemodynamic parameters: TTP, TTO,
PM, PU. These parameters have been extracted from the voxel-based
HRF estimates computed in Section 2. We consider conditionally
independent but not identically distributed multivariate observations
� = (yj)j from a GMM:

p(yj |wj , μ,Σ) =

KX
k=1

wjkNn (yj ; μk,Σk) (2)

where K denotes the set of components. The distribution under the
kth component (k = 1 : K) is a n-dimensional Gaussian distribu-
tion with mean μk ∈ �n and covariance matrix Σk ∈ �n × �n.
Let μ = (μ1, . . . , μK) and Σ = (Σ1, . . . ,ΣK) denote the sets of
mean vectors and covariance matrices, respectively. . Following [1],
the weights w = (wjk)k=1:K

j=1:J vary with space index j and satisfy:

wjk > 0 and
PK

k=1 wj,k = 1. In this paper, we shall assume that
w, μ,Σ are unknown and subject to inference while K is supposed
to be fixed and known. A generalization to an unknown value of K
is nontheless feasible (see [1, 11] for details). Let q = (qj)j=1:J be
J independent allocation variables with the multinomial distribution
p(qj = k |w, μ,Σ) = wjk, ∀k = 1 : K and assume that � are in-
dependent given q with p(yj | q, w, μ,Σ) = Nn(μqj

,Σqj ). Then,

we obtain Eq. (2) by integrating out qj .
The covariance matrices (Σk)k can be modeled specifically ac-

cording to the assumptions that seem tenable between the n features:

• iid features: The covariance matrix is given by Σk = σ2
kIn

where In is the n-dimensional identity matrix. Here, a single
variance component has to be estimated for each class k.

• independent features: Σk = diag
ˆ
σ2

1k, σ2
2k, . . . , σ2

nk

˜
. Here,

n variance components have to be estimated for each class k.

Full matrices Σ are beyond the scope of this paper. Interestingly, in
case of correlated features, this phenomenon can be handled using
a parsimonious correlation structure like a first order autoregressive
model that only depends on (σ2

k, ρk), ∀k: Σk = σ2
kΛ

−1
k where Λk

is tridiagonal and built up from ρk (cf. [2] for details).

3.2. Proper priors on mixture parameters

The following priors are introduced on the mixture parameters. The
retained values for the hyper-parameters allow us to define proper
but less informative prior densities.

• Mean vectors: μk|κ, ξ ∼ Nn(ξ, κ−1), ∀k = 1 : K where
vector ξ = (ξ1, . . . , ξn) and ξl corresponds to the half of
the range of the lth dimension of yl = (yl

1, . . . , yl
J) and

matrix κ is given by: κ = diag
ˆ
R−2

1 , . . . , R−2
n

˜
, with Rl

the length of the range of the lth dimension of yl.

• Covariance matrices: For the iid model, we consider ∀k =
1 : K, σ−2

k |α, β ∼ G(α, β) as prior density while for the
independent model, we need the following extension: ∀, k =
1 : K, l = 1 : n, σ−2

kl |α, βl ∼ G(α, βl). Parameter α is typ-
ically fixed (α = 3) while scalar β or vector β = (βl)l=1:n

are unknown and distributed according to β ∼ G(g, s) and
βl ∼ G(g, sl), respectively. Again, g is fixed (g = 0.3) while

scalar s or vector s are respectively given by s = 100g/(αR2)
with R =

Pn
l=1 Rl/n and sl = 100g/(αR2

l ) depending on
the covariance model.

3.3. Modeling spatial dependence

A crucial difference between (2) and the case of independent and
identically distributed mixture previously examined in [11] is that
the weights in model (2) are indexed by j so that they are allowed
to vary from voxel to voxel where observations take place. There
are actually two strategies for encoding spatial dependencies in a
mixture model: the first one consists in introducing a spatial struc-
ture connecting voxels through a hidden Markov model on allocation
variables (e.g. Potts model) [7, 12]. The alternative retained here
consists in encoding spatial dependence through the prior distribu-
tion of the weights. In simple terms, the basic behaviour that we try
to capture is that observations that correspond to nearby locations
are more likely to have similar values of the weights (i.e. similar
allocation probabilities) than observations from locations that are far
apart. Our analysis will therefore be conditional on a given graph
with the locations as vertices, and certain designated pairs of nearby
locations as edges. This graph will be the conditional independence
graph of a component of our models. Thus, we are working with
Markov random fields indexed by j. Pairs of locations connected by
an edge will be called neighbors.

Here, the proposed model to allow for spatially correlated weights
is introduced by means of a Gaussian Markov random field with pdf:

p(x|u) = c(u) exp

„
−1

2

`
u
X
j∼j′

(xj − xj′)
2 +

JX
j=1

x2
j

´«
(3)

= Nn (0, Q) with x = (x1, . . . , xJ), u > 0.

Here, matrix Q = IJ + uA where A = (ajj′) encodes the ad-
jacencies with ajj = νj the number of neighbors of Vj and off-
diagonal elements ajj′ = −1 if voxels Vj and Vj′ are neighbors
and ajj′ = 0 otherwise. The parameter u is non-negative and
c(u) is the appropriate partition function of the MRF (3): c(u) =

(2π)−J/2 QJ
j=1(1 + ugj)

1
2 where g1, . . . , gJ denote the eigenval-

ues of A. For a given graph, these vectors only need to be computed
once and can then be stored for any further analyses using the same
graph. From Eq. (3), it is clear that neighboring locations are induced
to have similar values as the value of the corresponding elements in
x, and this effect is more pronounced as parameter u increases. The
limiting case u = 0 corresponds to independence across locations,
whereas as u → ∞ the distribution in Eq. (3) tends to a degenerate
distribution where neighboring locations are forced to have exactly
the same value of the corresponding elements in x. Note that in
model (3) the term

P
j x2

j makes model (3) a proper distribution and
is necessary to obtain a proper posterior distribution in the mixture
setting. In the next subsection, following [1], we explain how Eq. (3)
is used to obtain a spatially correlated prior for the weights w in the
mixture model (2).

3.4. The Logistic Normal (LN) model

For a mixture with K components, our approach requires the intro-
duction of K independent vectors xk ≡ (x1k, . . . , xJk), ∀k = 1 :
K, each distributed according to model (3). Although the vectors are
independent of each other, each of them incorporates spatial depen-
dence among its J elements. Next, the weights are defined by using
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the logistic transform:

wjk =
exp

`
xjk/φ

´
PK

l=1 exp
`
xjl/φ

´ , k = 1 : K, (4)

with φ > 0. Thus, the weights for Vj depend on the jth element
of each of x1, . . . , xK . The dependence structure of (3) induces
spatial dependence among the weights. As u increases in pdf (3),
realizations of the xk-processes becolme smoother, and there is also
stronger shrinkage of the mean towards zero but the parameter φ can
compensate for this. Note that wjk/wjl = exp

`
(xjk − xjl)/φ

´
is a

monotonic function of φ converging to 1 as φ → ∞ and to either 0
or∞when φ → 0. A smaller value of φ can thus alleviate the effects
of increasing shrinkage in the x-values. The case φ = 0 corresponds
to wjk = 1 if xjk = maxl=1:K xjl and to wjk = 0 otherwise. This
implies that the allocation variables q are deterministic functions of
x. The other limiting case (φ → ∞) leads to wjk = 1/K, ∀(j, k),
thus precluding any spatial patterns in the weights. We shall restrict
φ to be sufficiently small to avoid this indesirable feature.

3.5. Priors on spatial interaction parameters

The parameter u controls the dependence in the MRF (3). In par-
ticular, u = 0 leads to independent weights w across locations.
The scale parameter φ affects the size and general behavior of w
and therefore also influences the correlation between the allocation
variables q. To cope with uncertainty about these smoothing param-
eters, we assign independent prior pdfs to them: u ∼ U([0, umax])
and φ ∼ U([0, φmax]) for some positive numbers umax and φmax.
The support intervals are chosen to be sufficiently large to allow for
interior modes in the posterior law, but not so large that the unrea-
sonable features displayed by w as φ increases could emerge. Our
basic settings are umax = φmax = 10.

Fig. 1. Directed acyclic graph corresponding to the LN spatial mix-

ture model (2)-(3). Square boxes represent fixed or observed quanti-

ties anc circles the unknowns.

3.6. Computational implementation

The Bayesian model proposed in this paper is too complex to be
amenable to analytical calculations. Hence, we resort to Gibbs sam-
pling since K is assumed to be known. To facilitate sampling, the al-
location and auxiliary variables (q and x) are introduced to compute
the joint posterior pdf of all variables describes in Fig. 1. It is worth
mentioning a couple of unusual features of our sampler. Firstly, since
the weights w are a deterministic function of (x, φ) (cf. Eq. (4))
they cannot be included as additional random variables in the sam-
pler. Secondly, in most steps of the sampler the allocation variables

q will be integrated out to avoid slow mixing for values of φ which
are small in relation to the values of xjk. The resulting Markov chain
is irreducible and has the required posterior law p(x, μ,Σ, u, φ |�)
as invariant distribution, so ergodic averages converge to the corre-
sponding posterior expectations. In Table 1, we only give the main
sampling steps.

Table 1. Gibbs sampler for fitting the MSGMM (iid features).

• Compute hyper-parameters κ, (Rl)l=1:n, s

• Initialize: ∀k(xk, σ2
k, μk), φ, u, β according to the priors.

• Iteration t: draw samples from the full conditional posteriors:

– q : ∀j | Pr(qj = k) ∝ wjkNn(yj ; μk,Σk)

– β ∼ G(g + Kα, s +
P

k σ−2
k )

– Cpt ∀k, nk =
PJ

j=1 �qj=k and mk =
PJ

j=1 yj�qj=k

– μk ∼ Nn

„
(κ + σ−2

k nk�n)−1| {z }
=Ξk

`
κξ + σ−2

k mk

´
,Ξk

«

– Cpt ∀j, eyj = yj − μqj
and ∀k, S2

k =
PJ

j=1 ‖eyj‖2�qj=k

– ∀j, xj ∼
`P

k wjkN (yj ; μk,Σk)
´× · · ·

· · ·×QK
k=1N (xjk;

(1 + uνj)
−1| {z }

ηj

P
j′∼j xj′k, ηj)

– φ ∼QJ
j=1

“PK
k=1 wjkN (yj ; μk,Σk)

”
�[0,φmax](φ)

– u ∼ c(u)k exp
`−u

2

PK
k=1

P
j∼j′(xjk−xj′k)2

´
�[0,umax](u)

– Update the weights w

• Iterate until convergence is achieved.

4. SIMULATION RESULTS

Artificial fMRI time series were generated according to the additive
principle defined in Eq. (1). Twenty trials of a single experimental
condition were involved in the experimental paradigm and thus in the
definition of matrix X . The true HRF shape followed the canonical
hemodynamic filter defined in [3]. Its parametric definition allows us
to specify true spatially-varying HPs as illustrated in Fig. 2. White
Gaussian noise bj and low-frequency drift P �j were then superim-
posed to Xhj in every pixel of the 2D grid. The noise was varied in
space according to a signal-to-noise ratio ranging from -10 to 12 dB.

As illustrated in Fig. 3, the first step of our approach consists in
extracting HPs from the HRF estimates derived in Section 2. Clearly,
these estimates are quite accurate, except for the TTU parameter
whose estimate seems noisy (cf. Fig. 3(d)). Fig. 4 illustrates our
MSGMM-based clustering results using K = 4. First, it is shown
that the extracted HPs give clusters that are very close to those pro-
vided by the true HPs (compare Fig. 4(b)-(d) vs. Fig. 4(a)-(c)).
Moreover, given that the current implementation of the MSGMM
approach corresponds to iid features (Σk = σ−2

k In), we studied the
influence of varying the dimension n: it appears that the removal of
the UM parameter, which is differently distributed than other HPs,
induces stronger coherence in the clusters recovered from the true
and estimated HPs. This probably indicates that diagonal but not iid
covariance matrices Σk would be helpful in such Fig. 4(c)-(d) also
demonstrate that the four mixtures components are well localized in
space with respect to the true parameters. Finally, Fig. 4 shows that
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(a) (b)

(c) (d)

Fig. 2. 2D map of true HP. (a): peak magnitudes; (b): Undershoot

magnitudes; (c): time-to-peak; (d): time-to-undershoot.

(a) (b)

(c) (d)

Fig. 3. 2D map of HP estimates extracted from voxel-based bhMAP
j

estimates. (a): PM; (b): UM; (c): TTP; (d): TTU.

each class is not necessarily a connected component suggesting that
some post-processing for dividing each class into connected compo-
nents is required to define a parcellation of the brain.

5. CONCLUSION

The present paper has achieved the goal of deriving a statistical clus-
tering approach from HP estimates. This clustering does not guar-
antee the recovery of connected ROIs and thus makes necessary
some post-processing to generate an input parcellation to the joint
detection-estimation framework of brain activity developed in [2].
This approach has been presented in the context of a single stimu-
lus type and could therefore be generalized to multiple conditions.
In addition, our clustering is supervised: the number of classes has
been chosen empirically while in practice, this number is not known
making its unsupervised extension the topic for future works as well
as the validation on real data.
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