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ABSTRACT

Modern medical ultrasound scanners estimate blood velocity

distribution by computing the spectrogram of a temporal data

sequence, typically using periodogram methods which re-

quire long observation windows. Furthermore, an additional

B-mode image is often displayed, resulting in gaps in the data

at B-mode emissions. We propose a data-adaptive velocity

estimator for periodically gapped (PG) data that extends PG-

Capon and PG-APES by using two dimensional spatial and

temporal data to estimate a one dimensional spectrum. We

show through realistic flow simulations that our method im-

proves spectral resolution and reduces leakage in comparison

to PG-Capon, PG-APES, and correlogram based gapped data

velocity estimators, potentially increasing the maximum de-

tectable velocity and temporal resolution of blood flow using

ultrasound.

Index Terms— gapped data spectral estimation, blood

velocity estimation, medical ultrasound

1. INTRODUCTION

Spectrum Doppler is a medical ultrasound mode that esti-

mates blood and tissue velocity. A sinusoidal pulse of several

cycles is emitted and the received echo is called the fast-time,

or axial, signal. At a selected depth, samples within a range

gate are recorded and averaged, yielding one temporal sample

per emission. Although averaging is sub-optimal, it is simple.

The process is repeated many times with subsequent emis-

sions fired at the rate of the pulse repetition frequency (PRF).

The slow-time, or temporal, signal sampled at the PRF has a

spectrum proportional to the velocity distribution of the flow.

The spectrum is evaluated at different times to create a spec-

trogram that reflects the time-varying velocity distribution of

in-vivo flow.

In commercial systems, the spectrum is typically esti-

mated with an averaged periodogram, or Welch’s method.

[1] Such Fourier Transform based methods suffer from poor

resolution or leakage, requiring a large observation window

and hence lowering the frame rate. Data dependent spectral

estimators such as Capon and amplitude and phase estima-

tion (APES) [2] offer much higher resolution and reduces the

observation window. Gran et al. proposed modified Capon

and APES estimators called Blood Power Capon (BPC) and

Blood spectral APES (BAPES) [3] in which the correlation

matrix uses spatial, or fast time, information in addition to the

temporal signal to improve the accuracy of the estimation.

In addition to estimating and displaying the spectrogram,

ultrasound systems often run in duplex mode where a B-mode

image is displayed with the spectrogram. B-mode emissions

are interleaved with Doppler emissions, and depending on the

ratio between B-mode and Doppler emissions, there may be

gaps in the Doppler emissions. For spectral estimation with

missing data, a correlogram based method that weights each

lag based on available observations is proposed in [4]. How-

ever, it suffers from the same resolution problems as other

Fourier based methods. GAPES, an extension of APES to

gapped data [5] is based on interpolation of the missing sam-

ples and has the resolution of APES and can handle quite gen-

eral sampling patterns. However it is computationally heavy

and cannot be extended to the Capon method. PG-Capon and

PG-Apes is an interpolation free and extension to periodically

gapped (PG) data that may be orders faster than GAPES [6].

We propose an extension of PG-Capon and PG-APES

called BPG-Capon and BPG-APES respectively. Temporal

samples from different depths, after a correction to depth

dependent phase shift, are used as additional minimization

criteria. In the special case of no gaps, BPG-APES reduces

to BAPES of [3]. Using simulated Field II flow data of a

time-varying flow [7], we show an improvement in main lobe

width and leakage over conventional PG estimators and the

correlogram method.

2. THEORY AND METHODS

Defining depth as z-axis, axial (depth) velocity vz at the inter-

rogated location is determined from slow-time samples xd(n),
corresponding to emission n at fast-time (depth sample) d.

xd(n) can be expressed by its analytic (but not baseband) rep-

resentation as [8]

xd(n) = αvz exp

[
j2π

(
d

fc

fs
−n

2 fcvz

c fpr f

)]
+ evz,d(n) (1)
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for d = 0, . . . ,D− 1 and n = 0, . . . ,N, where αvz is the com-

plex amplitude of the complex sinusoid at velocity vz, evz,d(n)
is the residual term consisting of all signals at velocities dif-

ferent from vz and system noise, fc is the transducer center

frequency, fs is the system sampling frequency, fpr f is the

pulse repetition frequency, and c is the speed of sound in the

body. Velocity is assumed to be constant in both the slow-

time observation window of length N and fast-time window

of length D, also called range gate. The observation window

is then shifted in slow-time to create the next vertical spec-

trum slice in the spectrogram. Estimating the blood velocity

distribution is then a problem of estimating |αvz |2 for each ve-

locity of interest. After the substitution ω = −4π fcvz/c fpr f
and φ = 2π fc/ fs, we have

xd(n) = αω e jφd+ jωn + eω,d(n) (2)

By interleaving B-mode and Doppler emissions in a peri-

odic pattern, such as v v v b v v v b . . . where v denotes Doppler

emission, b is a B-mode emission, v v v b is a cluster of peri-

odicity 4 with 3 available samples and 1 missing sample. The

Doppler samples xd(n) exist for all d and n but are available

only for

n = 0, . . . ,Ns −1,
Np, . . . ,Np +Ns −1,
...

(Nc −1)Np, . . . ,(Nc −1)Np +Ns −1

(3)

and all d. Np is the periodicity of the clusters, Ns is the number

of available samples per cluster, and Nc is the total number of

clusters. Therefore, Na = NcNs samples are available for each

depth.

Following [6] and defining Ñc and Ñs and as two user cho-

sen parameters, we divide the data into DL so-called snap-

shots xd(l) of length M = ÑcÑs where L = (Ns− Ñs +1)(Nc−
Ñc +1) and

xd(l) = [xd(kl +m0) xd(kl +m1) . . .x(kl +mM−1)]T (4)

for l = 0, . . . ,L−1, where kl and ml are vectors of indices

kl = {0,1, . . . ,Ns − Ñs,
Np,Np +1, . . . ,Np +Ns − Ñs, . . .
(Nc − Ñc)Np,(Nc − Ñc)Np +1, . . . ,
(Nc − Ñc)Np +Ns − Ñs}

ml = {0,1, . . . , Ñs −1,
Np,Np +1, . . . ,Np + Ñs −1

(Ñc −1)Np,(Ñc −1)Np +1, . . . ,
(Ñc −1)Np + Ñs −1}

(5)

Now form the following matrices

Xd � [xd(0) . . .xd(L−1)] (6)

X � [X0 . . .XD−1] (7)

where Xd is a M × L matrix whose l’th column is xd(l)
and X is a M ×DL matrix of Xd’s stacked row-wise. Sim-

ilarly, define Eω,d � [eω ,d(0) . . .eω,d(L − 1)] and Eω �
[Eω,0 . . .Eω,D−1]. Let

Ad(ω) � aM(ω)aT
L,d(ω) (8)

A(ω) � aM(ω)aT
L (ω) (9)

where

aM(ω) � [e jωm0 . . .e jωmM−1 ]T (10)

aL,d(ω) � [e jωk0+ jφd . . .e jωkL−1+ jφd ]T (11)

aL(ω) � [aL,0(ω)T . . .aL,D−1(ω)T]T (12)

and phase shift caused by depth is incorporated into aL(ω)
rather than aM(ω). aL(ω) consists of D complex sinusoids

with incremental phase shift φ stacked on each other column-

wise. We can write (2) as

X = α(ω)A(ω)+E(ω) (13)

and interpret the estimation of α(ω), which is assumed to be

constant over the temporal and spatial observation window, as

a linear regression between α(ω) and the spatial and tempo-

ral available data matrix X. Because the DL residual vectors

eω,d(l) are correlated, we compute the weighted least-squares

(WLS) estimate of α(ω) as

α̂(ω) = argminα(ω)‖W−1/2(X−α(ω)A(ω)‖2 (14)

where ‖ · ‖ is the Froebenius norm and (·)−1/2 is the Hermi-

tian square root of a positive definite matrix. The weight-

ing matrix W essentially whitens the residuals eω,d(n) within

an individual residual vector eω ,d(l) but not necessarily be-

tween vectors. If the transformed residuals are uncorrelated

with each other and have equal mean and variance, then by

the Gauss-Markov theorem, α̂(ω) is the best linear unbiased

estimator (BLUE). In practice, we can approximate but not

guarantee the aforementioned conditions, but nevertheless ar-

rive at a “good” solution. The solution to (14) is [6]

α̂(ω) =
aH

M(ω)W−1g(ω)
aH

M(ω)W−1aM(ω)
(15)

where

g(ω) � 1

DL
Xac

L(ω) (16)

where (·)c denotes complex conjugate and (·)H denotes Her-

mitian tranpose.

We obtain a collection of methods by choosing different

W,X and aL:

BPG-Capon: Our proposed estimator uses available 2-D

data to solve a 1-D spectrum estimation problem in which a

phase difference between depth samples needs is accounted

for.

WBPGC =
1

DL
XXH � R̂ (17)
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Fig. 1. Comparison of spectrograms for an unsteady flow using observation windows of the same length of 36 obtained using

different gapped data estimators. With the exception of the reference Capon spectrogram of non-missing data, all spectrograms

are computed from data where every third sample is missing. D denotes the number of depth samples used in the estimators.

BPG-APES: We can choose a data-dependent weight

WBPGA(ω) = R̂− 1

D
g(ω)gH(ω) � Q̂(ω) (18)

PG-Capon and PG-APES: For a fixed depth d0 = �D/2�,

we get the purely 1-D original PG estimators.

WPGC =
1

L
Xd0

XH
d0

� R̂d0
(19)

WPGA(ω) = R̂d0
−gd0

(ω)gH
d0

(ω) (20)

where gd(ω) � 1
L Xdac

L,d(ω).
BAPES: The Blood spectral APES proposed in [3] is for

conventional, non-missing data velocity estimation. Here,

Nc = 1, Ñc = 1, Ñs = M, and Ns = N because there are no

gaps. We still form Xd’s and X with (6) and (7).

WBAPES = Q̂(ω) (21)

BPC: Blood spectral Power Capon [3] uses the estimator

α̂(ω) =
1

aH
M(ω)R̂−1aM(ω)

(22)

We will compare the methods to a non-data adaptive ve-

locity estimator [4] based on the correlogram

α̂(ω) =
N−1

∑
u=−(N−1)

R̂(u)e− jωu (23)

R̂(u) =
1

DA(u)

D−1

∑
d=0

N−1

∑
n=0

x∗d(n)xd(n+u) (24)

where A(u) denotes the number of available lag estimate pairs

x∗d(n)xd(n+u) where both samples are not missing, for a fixed

d.

3. RESULTS AND DISCUSSION

We evaluate the performance of the estimators with realistic

simulated flow with time-varying velocity distribution using

the Field II package [7]. We use an existing implementation1

of a cylindrical vessel flow profile based on the Womersley

model [9] for pulsating flow from the femoral artery. The flow

model is highly pulsating and will test the estimators’ ability

to handle rapid velocity variations. A 5MHz 64 element linear

array transducer was simulated with an excitation waveform

of a four cycle sinusoid at the transducer center frequency.

The PRF was 15 KHz and the system sampling frequency was

100 MHz. The received RF lines were Hilbert transformed

to create the in-phase and quadrature components. Additive

white zero mean circularly symmetric Gaussian noise was

added at a SNR of 50 dB. Clutter filtering may be done in

the frequency domain by zeroing low frequencies.

For generating the spectrograms of Figure 1, missing sam-

ples were zeroed out with the periodic pattern of 1 1 0 1 1 0

. . . where 1 denotes an available sample and 0 denotes a miss-

ing sample. We use a series of methods all using an obser-

1http://server.elektro.dtu.dk/personal/jaj/field/
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vation window of N = 36. With every third sample missing,

gapped data estimators only have 24 available samples. For

methods that require depth samples, we use D = 20 samples.

The depth-averaged correlogram estimator performs well for

a long observation window (> 100) but suffers from poor res-

olution and high noise estimates when using short observation

windows. For the periodic gapped data techniques, we have

in each observation window Nc = 12 clusters of length N̂c = 2

with Ns = 2 and N̂s = 2. Estimators that use depth informa-

tion are less vulnerable to aliasing effects and have improved

spectral resolution. Finally as a reference, we perform a con-

ventional Capon estimate with no missing estimates of order

12.

For display, the spectrums are log transformed and the

lowest 0.005 and highest 0.995 values are clipped because

blood spectrum is assumed to be non-spiky. Therefore out-

liers do not offer any relevant information and only reduce

contrast. The spectrograms are then displayed with a large

dynamic range of 80 dB for comparison. In practice, using a

smaller dynamic range will threshold lower pixel intensities

and create a cleaner image, but such processing will mask the

true performance of the methods.

In Figure 2, we plot the spectrum corresponding to peak

systole at t=0.12s from Figure 1 and compare main lobe width

and leakage levels. For the spectral peak at -1.3 m/s, the main

lobe width is smallest for the Capon estimator, largest for

the correlogram and PG-Capon, with BGP-Capon in between.

We see that the BPG-Capon estimate is 10-20 dB lower than

PG-Capon in the noise velocity range. The APES variants be-

have similarly but are not plotted for figure clarity. We also

see the aliasing artifact at 1.5 m/s in the BPG-Capon estimate

is about 20 dB lower than its counterpart in the PG-Capon

estimate.

4. CONCLUSION

We proposed a high resolution spectral velocity estimator for

gapped data that uses two dimensions - spatial and temporal

dimensions - to solve a one dimensional spectral estimation

problem. Through simulations using a realistic flow model,

we show that the two dimensional estimator outperforms the

pure 1-D estimators in both spectral resolution (mainlobe

width) and contrast (leakage). Because uniform sampling

limits the PRF of Doppler ultrasound, our proposed method

has the potential to increase both the maximum detectable

velocity and temporal resolution of blood flow using medical

ultrasound.
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