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ABSTRACT

In this paper, a new framework for confocal microscopy
based on the novel theory of compressive sensing is pro-
posed. Unlike wide field microscopy or conventional parallel
beam confocal imaging systems that use charge-coupled de-
vices (CCD) as acquisition devices in addition to complex
mechanical scanning system, the proposed compressive con-
focal microscopy is a kind of parallel beam confocal imaging
system which exploits the rich theory of compressive sensing
by using a single pixel detector and a digital micromirror
device (DMD) to capture linear projections of the in-focus
image. With the proposed system, confocal imaging of high
optical sectioning ability can be achieved at sub-Nyquist
sampling rates. Theoretical analysis, simulations and exper-
imental results are shown to demonstrate the characteristics
and potential of the proposed approach.

Index Terms— confocal imaging, compressive sensing,
programmable array microscopy, SBHE, DMD

1. INTRODUCTION
Recently, the new field of compressive sensing (CS) has
emerged with the promise to revolutionize digital signal/image
processing broadly [1, 2]. The key idea is the use of non-
adaptive linear projections to acquire an efficient, dimen-
sionally reduced representation of a signal or image directly
using just a few measurements. The recovered signals can be
obtained from the compressed measurements using nonlinear
reconstruction algorithms [3]. Such results can lead to the use
of reduced resources at the acquisition stage of an imaging
system, as that shown in [4] where random projections of an
image are obtained using a single pixel detector. In essence,
CS combines sampling and compression into a single non-
adaptive linear measurement process, allowing sub-Nyquist
sampling rate with no signal degradation.
This paper is motivated by the important realization that

the fundamental principles governing confocal microscopy
can be exploited almost effortlessly to attain the linear pro-
jections used in CS. Confocal microscopy is an imaging tech-
nique of increasing importance used in cell biology, genet-
ics and microbiology [5]. Unlike conventional microscopy
which images the whole field with one shot, confocal mi-
croscopy produces in-focus images through a process called

optical sectioning. Thus, images are captured in a point-by-
point fashion and reconstructed by a software-driver. The key
feature of confocal microscopy is the conjugate positioning
of the source pinhole scanning point in the specimen and a
second pinhole in front of a detector. It greatly reduces the
out-of-focus light so that the axial resolution is significantly
enhanced. Conventional confocal imaging, however, requires
time-consuming scanning over 2D or 3D raster patterns. Sev-
eral approaches to raster scanning have been introduced in
order to speed-up the image acquisition time in confocal mi-
croscopy. In particular, architectures based on Programmable
array microscopes (PAM) [6] are of great interest as these
are based on coded illumination patterns readily attained by
DMD. However, it is still limited by the Nyquist sampling
rates.
In this paper, we exploit the rich theory of CS to reduce

significantly the sampling rate and achieve, at the same time,
perfect signal reconstruction. Compressive sensing funda-
mentally relies on the sampling of random projections. Thus,
rather than measuring the contribution of a single pinhole as
it is sequentially scanned, the proposed compressive confo-
cal microscopy measures the superposed contributions of a
random set of pinholes, using only a single detector. Given a
small set of measurements, each with a different arrangement
of pinholes, the theory of compressed sensing then allows
for the perfect image reconstruction from a dimensionally
reduced representation. Compressive confocal microscopy
(CM) emerges as a new CM framework offering the poten-
tial advantage to lowering costs by simplifying the hardware
and optical complexity. This is attained by off-loading the
processing from the data acquisition into the image recon-
struction which is performed digitally in a standard computer.

2. COMPRESSIVE CONFOCAL MICROSCOPY

In the proposed compressive confocal CM, a DMD placed at
the primary image plane is uniformly illuminated by coher-
ent or incoherent light source. The modulation pattern of the
DMD produces a structured illumination on the object as is
shown in Fig. 1. The emission (or reflection) light from the
object is then imaged back onto the DMD and from there, via
a beam splitter and focusing lens, onto a single pixel detec-
tor. By adding up the contributions from all micromirrors at
the ′on′ position, we get the conjugate measurement, which
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is formed by the ‘in-focus’ light[6] and is a linear projection
of the in-focus plane. The system we are studying is an inco-
herent optical system, thus the objective could be modeled as
a linear translation invariant (LTI) system of intensity. Three-
dimensional (3D) imaging is realized by moving the object
along the axial direction and obtaining CS measurements of
the corresponding slice at the in-focus plane. As can be seen
in Fig. 1 no mechanical scanning is needed in the imaging
process since the single pixel detector is fixed in the lateral
dimension. Furthermore, by changing the orientation of the
micromirrors several projections of the in-focus plane can be
obtained.
Next, we derive the expression for the compressive CM

measurement in fluorescence mode. Following the definition
in [6], the i-th modulation pattern of a DMD is given by

Si(xd, yd) =
{
1 if (xd, yd) is on a mirror that is ′on′

0 if (xd, yd) is on a mirror that is ′off ′
(1)

where (xd, yd) is the two-dimensional (2D) coordinate sys-
tem on DMD plane, with (0, 0) as the center of DMD. It can
be shown that the illumination pattern of a given object is
given by

Iex(xo, yo, zo; i) =
∫∫ +∞

−∞
Si(Mu,Mv)

×Hex(xo − u, yo − v, zo)dudv,

(2)

where M and Hex are, respectively, the magnification and
the excitation point spread function (PSF) of the objective.
(xo, yo, zo) denotes a 3D coordinate system for the object
O(xo, yo, zo), where xo = xd

M , yo = yd

M .

Fig. 1. Compressive confocal microscopy system.

The i-th conjugate measurement is given by adding up the
contribution of reflected light off mirror elements at the ′on′

position. This is,

Ic(i) =
∫ L×ρ

2

−L×ρ
2

∫ W×ρ
2

−W×ρ
2

∫∫∫ +∞

−∞
Hem(

xd

M
− u,

yd

M
− v, w)

×Iex(u, v, w; i)O(u, v, w − zs)dudvdw × Si(xd, yd)dxddyd,

(3)

where L and W mean that there are L × W micromirrors on
the DMD, ρ is the size of DMD mirror, Hem is the emission
PSF of the objective. The non-conjugate measurement from
the mirror elements at ′off ′ position, which is formed by ‘out-
of-focus’ light, is given by

In(i) =
∫ L×ρ

2

−L×ρ
2

∫ W×ρ
2

−W×ρ
2

∫∫∫ +∞

−∞
Hem(

xd

M
− u,

yd

M
− v, w)×

Iex(u, v, w; i)O(u, v, w−zs)dudvdw(1−Si(xd, yd))dxddyd,

(4)

For mathematical tractability, we assume a discrete model for
the object of interest. More precisely, to reconstruct an N ×
N object f(m,n), m = 1, 2, · · · , N ; n = 1, 2, · · · , N , the
DMD is divided into N × N cells, with W

N × L
N mirrors in

one cell. In the process of imaging, each mirrors within one
cell are set at the same position, i.e. all ′on′ or all ′off ′. Let
Si(m,n) represent the status of the (m,n)-th cell for the i-th
measurement, then we have:

Ic(i) =
N∑

m=1

N∑
n=1

Si(m,n)Ci(m,n)f(m,n)
+Ic,blur(i) + bc(i),

(5)

In(i) =
N∑

m=1

N∑
n=1

Si(m, n)(Iex,i(m,n) − Ci(m,n))f(m,n)
+In,blur(i) + bn(i),

(6)

where Ci(m, n) represents the percentage of collected en-
ergy at the (m,n)-th point for the i-th modulation pattern,
Iex,i(m, n) represents the illumination on the (m, n)-th point
(0 ≤ Iex,i(m,n) ≤ 1), Ic,blur(i) and In,blur(i) are contri-
butions from points at focal plane conjugate to ′off ′ mirrors,
bn(i) and bc(i) represent out-of-focus contributions (back-
ground). Ideally, Ci(m, n) = δ(Si(m, n) − 1). However,
due to the effect of PSF, light arising from conjugate point
on object will leak some energy on its neighbor points. If
the neighbor point is also ′on′, then the leaked energy will
still be collected by conjugate measurement detector. If the
neighbor point is ′off ′, the energy will not be detected by
conjugate measurement detector, which means Ci(m, n) < 1
when Si(m,n) = 1. Ci(m,n) can be thought of as im-
pulse response of the system, it varies with position (m, n)
and ′acquisition time′ i.
The modulation patterns given by Eq. (1) has to be de-

fined in some optimal fashion, since it incorporates the ran-
domness needed to project the image of interest into a ran-
dom basis. To be more precise, consider a 2D image F of size
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N ×N , F = {f(m,n)}, n = 1, 2, · · · , N ; m = 1, 2, · · · , N .
Furthermore, suppose F is sparse or compressible on some
fixed basis. Let Φ be a N × N random binary sensing ma-
trix. Projecting F onto Φ yields: Y = ΦFΦH , where Y =
{y(m, n)},m = 1, 2, · · · , N ; n = 1, 2, · · · , N . It can be
shown that the projection operation reduces to:

y(m,n) =< Bm,n, F >, (7)

{Bm,n} is referred to as measurement ensemble. Among the
N2 projections, we randomly chooseM (M < N2) possible
modulation patterns that leads to M {Bm,n} measurement
matrices. Loading the M basis images B onto the DMD
with mirror elements switched to ′on′ (′off ′) position if the
corresponding entry on the B matrix is a 1 (0). We obtain
thus a collection of M measurements. Then, we proceed
to reconstruct F via non-linear optimization from the M
measurements [3]. Two different sensing systems that have
been found to speed up the signal reconstruction process are
used to define the modulation pattern {Bm,n}. They are
Ordered Hadamard ensemble (ODHE) and Scrambled Block
Hadamard ensemble (SBHE) [7].
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Fig. 2. (a) Example of modulation patterns, image size
128 × 128. Top: ODHE, percentage of openings 50%. Bot-
tom: SBHE, BS=32, percentage of openings 3.125%. (b)
The conjugate measurement of an infinitely thin plane as
a function of its relative position to the in-focus plane ob-
tained by compressive CM with several modulation patterns.
The system parameters are set as follows: DMD micromir-
ror size ρ = 13.68μm, NA=1.4, M=100, excitation wave-
length=633nm, emission wavelength=665nm, refractive in-
dex=1.515.
For ODHE pattern, the measurement matrix Bm,n is de-

fined as Bm,n=HZm,nHT , where H is the Hadamard trans-
formmatrix andZm,n is anN×N matrix with just a non-zero
entry at position (m,n). Note that Bm,n contains a basis of
the Hadamard transform. In turn, the ′on′ mirrors are placed
closely and not pure randomly on DMD, Ci(m,n) is thus
spatial-variant, which may cause severe artifacts at the cor-
ner of the reconstructed image from conjugate measurement.

As can be seen in Eq. (6), non-conjugate measurements con-
tains those ′leaked′ energy from conjugate points. We could
minimize those artifacts by adding up recovered images from
non-conjugate measurement to it.
For SBHE patterns, Bm,n=P−1

N W−1Zm,n, where Zm,n

is a matrix with just one non-zero entry at the (m,n) position,
PN representsN2 points scramble operator andW is a block
Hadamard transform operator [7]. Since SBHE pattern is
sparse, it is quite likely that neighbor mirrors of an ′on′ mirror
are all set to ′off ′ position. Under this assumption, Ci(m, n)
in Eq. (5) could be considered as spatial-invariant. Further-
more, the distribution of ′on′ mirror in SBHE pattern is pure
random and the percentage of openings are the same for all
the measurements (except for measurements corresponding to
the lowest frequency components in the Hadamard domain),
Ci(m,n) is also time-invariant.
Figure 2 (a) depicts illustrative examples of an ODHE and

an SBHE measurement matrices. As can be seen, the SBHE
pattern is much sparser than the ODHE pattern. In turn, the
light efficiency becomes much lower. Figure 2(b) shows the
normalized axial response of an infinitely thin plane with dif-
ferent modulation patterns. As can be seen from Figure 2(b),
the SBHE pattern offers better optical sectioning ability than
the ODHE pattern. The improvement in degree of confocality
found arises from the sparsity of SBHE pattern. Thus there
is a tradeoff between light efficiency and optical sectioning
ability, thus by increasing the block size (BS) of the SBHE
pattern, light efficiency increases whereas the degree of con-
focality decreases.

3. SIMULATIONS
In Fig. 3, we evaluate the performance of the compressive
CM as the object thickness changes. The performance of the
proposed approach is compared to that yielded by conven-
tional microscopy. Equations (3) and (4) are used to model the
imaging system numerically. PSF for the simulation is gener-
ated by ImageJ Plug-in Diffraction PSF 3D [8]. Figure 3(b)
shows images from compressive CM with ODHE patterns
obtained by subtracting recovered nonconjugate image from
the recovered conjugate image. Figure 3(b) shows images
from compressive CM with SBHE patterns reconstructed us-
ing conjugate measurement only. These results show that as
the object thickness increases, due to poor optical sectioning
ability, the quality of the reconstructed images obtained with
conventional microscopy and compressive CM with ODHE
starts to degrade, whereas, as shown in Figure 2(b), compres-
sive CM with SBHE yields much better sectioning capability
offering thus higher quality image for thick object compared
to that of conventional microscopy. Note that the performance
of compressive CM with ODHE is competitive compared to
that yielded by conventional microscopy. For CS image re-
construction, we use total variation minimization algorithm.

4. EXPERIMENTAL RESULTS
To evaluate the performance of the proposed compressive
CM in a practical scenario, we design a hardware prototype
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Fig. 3. (a) Conventional wide-field imaging. (b) Compres-
sive CM with ODHE pattern. (c) Compressive CM with
SBHE pattern, BS=32. Simulation parameters: micromir-
ror size ρ = 13.68μm, NA=1.4, refractive index=1.515,
excitation wavelength=633nm, emission wavelength=665nm,
DMD size 1024×768, sampling rate=25%, image size=128×
128. Top: thickness=0.14μm. Bottom: thickness 7μm.

(testbed) that uses low cost and widely available compo-
nents. In the experimental setup, shown in Fig. 4(b), the
objective used has a magnification of 40 and 0.63 NA. A
DC regulated quartz halogen lamp is used as illumination
source. The source is collimated and projected to a Texas
Instruments DMD of up to 1024 × 768 13.68 × 13.68 μm2

mirrors optimized at the visible spectrum. Figure 4(a) depicts
the reconstructed images yielded by the l1 regularized least
square algorithm [3] with real data captured using the exper-
imental setup for two different modulation patterns with a
compression rate of 45%. Note that, the imaging target here
is infinitely thin and compressive CM works in reflection
mode. In this case, compressive CM with ODHE and SBHE
pattern yield comparative performance in agreement with the
simulation results of an thin object with thickness 0.14μm.

5. CONCLUSIONS

In this paper, we have developed a new confocal microscopy
system based on compressive sensing. The proposed com-
pressive CM has the potential advantage of simplifying the
hardware and optical complexity of confocal imaging systems
by off-loading the processing from the data acquisition stage
into that of image reconstruction which is software driven
leading thus to a lower-cost imaging system. Furthermore,
it offers the unique optical sectioning property of confocal
imaging. Depending on the design of compressive sampling
measurement patterns (illumination patterns), in some cases
up to 90% reduction of scan effort and 50% light efficiency
are feasible. To fully explore this design concept, our future
work will be focused on: develop system noise cancelations,
test compressive CM with biological specimens, design opti-
mal projection matrices and explore 3D reconstruction.
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(a) (b)

Fig. 4. Confocal images reconstructed using projections ob-
tained from the experimental testbed. Image reconstruction
obtained from (a) Top: ODHE projection patterns and (a)
Bottom: SBHE projection patterns, BS=64. For both the
sampling rate=45%, image size=128 × 128. Imaging target:
USAF-1951, group 5, element 4, 45.25 lp/mm, feature size
11μm (b) Experimental setup.
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