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ABSTRACT 

The use of a wearable triaxial accelerometer for unsupervised 
monitoring of human movement has become a major research 
focus in recent years. In this paper, the relationship between 
accelerometry signals and human gait is analysed using a linear 
prediction (LP) model.  We explore the use of the LP model for 
analysing five gait patterns and show that the LP cepstrum can be 
used for gait pattern classification with high accuracy. This is then 
compared to a filterbank based approach to estimate the cepstral 
coefficients. Fifty subjects participated in collection of gait pattern 
data involving walking on level surfaces, and walking up and 
down stairs and ramps. The results show that an overall accuracy 
of 93% can be achieved using features derived from the cepstral 
coefficients for the five different walking patterns. 

Index Terms- Gait Modelling, Gait Classification  

1. INTRODUCTION

Gait analysis when applied to the study of walking provides 
detailed information on body movements. The ultimate goal of 
such an analysis is to provide reliable objective data for making 
clinical judgements and assessments. Thousands of gait 
features/parameters have been used over the years for such 
analyses. The selection of optimal gait features forms an important 
part of any gait analysis research process. In this application 
biomechanical gait models are used to relate visual features 
extracted from video with rotations and translations of parts of the 
body, such as thighs, hips, ankles and knees, over time[1].  

In the past few years, accelerometric sensors have been used 
in studying daily physical activities and considerable work has 
been done in applying accelerometric technology to gait studies. 
Three-dimensional models for gait analysis of human motion have 
been constructed as described in [2], and [3] links gait 
characteristics to acceleration data recorded at the waist. Changes 
in gait patterns due to ageing by using support vector machines and 
neural networks have been investigated in [4]. Normal gait-pattern 
acceleration signals, measured at the thigh, have been documented 
by [5]. In [6], the use of a Kalman filter to estimate inclination 
from a trunk-mounted accelerometer is explored, and [7] used a 
gyroscope placed at the shank to detect stair climbing. 

The human gait is a very complex process, involving the 
movement of many body segments. Modelling gait patterns has 
been a challenging task and can be accomplished in a number of 
different ways, including using biometric sensors where the 
displacement of different parts of the body is measured. The main 
objective of the work reported in this paper is to model the 

acceleration signals corresponding to five gait pattern (flat-slope 
down-slope up-stairs down-stairs up), captured by an 
accelerometer positioned on the person’s waist. We also aim to 
classify the different gait patterns using features extracted from the 
model.

2. GAIT MODEL 

Acceleration is the second derivative of displacement and 
consequently the measured acceleration signal captured through 
the accelerometer comprises translational acceleration, rotational 
acceleration, gravitational acceleration, vibrations of muscles, the 
coupling impact resulting from the movement of the different parts 
of the body, and the impact of the foot-strike event. Even though 
muscles can be modelled as a mass, a spring and a dampener [8] 
(Figure 1), its complexity makes it difficult to analyze the gait 
pattern in detail. Therefore, assumptions are made during gait 
patterns modelling. The common assumption is that hip 
acceleration comprised of impulse excitations (from the foot 
strikes) propagate through the biomechanical model (spring-mass-
dampener system) to the hip. 

Figure1. Biomechanical model of muscles of a human, where M is the 
mass, k is the spring constant and p is the damping coefficient.

In this paper, hip acceleration is modelled by placing poles at the 
frequencies which produces a good model. This process can be 
estimated using a linear predictor model where the present value is 
formulated as a linear combination of the past values.  
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3. THE ACCELEROMETER MODEL 

The accelerometer signal measured can be modelled as the sum of 
the hip acceleration, the gravitational acceleration and artefacts 
caus d e les and  foot-strike events.  e  by th musc  the

 (1) 

Omitting the gravitational component, the acceleration signal can 
be modelled as shown in Figure 2. It has been shown that the hip 
movement acceleration can be modelled as a 2nd order all pole 
system since it is known to be a quasi-periodic signal [1]. The 
artefacts from the muscles and foot-strike events can be modelled 
as an auto-regression-moving-average (ARMA) model. The model 
transfer functions are found using the MATLAB System 
Identification Toolbox.  

Figure2. Accelerometer signal modelling   

The model in Figure 2 combining a 15th order ARMA model of the 
artefacts and a 2nd order LP model of the hip movement is then 
approximated by a 30th order linear predictor model. The linear 
pred iv  bictor model is g en y: 

   (2)

where  is the kth predictor coefficient, p is the number of 
previous samples used in the prediction, and K is an arbitrary gain 
factor. 

Figure3. The model comparison of the original signal spectrum(blue lines), 
the gait model(black dots), and the LP model shown by the red star for 
stairs down walking.   

The magnitude spectra of the original 15th order ARMA model 
(black dots) and the 30th order linear predictor model (red crosses) 
are compared to the magnitude spectrum of the measured 
acceleration signal (blue line) for a gait pattern corresponding 
walking downstairs is shown in Figure 3. It can be seen that the 
30th order LP model is reasonably accurate in modelling walking 
pattern (down stairs). We have used similar models for other gait 
patterns as well. 

4. CLASSIFICATION 

We tried to visualize the LP coefficients of the five gait patterns 
using non linear mapping [9]. The LP coefficients are mapped to a 
lower dimension space, while maintaining the relative distances 
between them in the original feature space. 

Figure4. Nonlinear mapping of the linear prediction coefficients of five 
gait patterns 

The large amount of overlap among the LP coefficients of 
different gait patterns as can be seen in Figure 4 suggests that they 
are not suitable to be used as features for gait pattern classification 
directly. For classification purposes, we transformed the LP 
coefficients into the cepstral domain. This is done using the 
following equations:  

(3)

   for   (4) 

where am is the mth LP coefficient, c0 is the LP gain, p is the LP 
order and cm is the mth cepstral coefficient. 

The separation between the five gait patterns is much better 
when using the LP based cepstral coefficients as seen in Figure 5 
than when using the LP coefficients directly. 
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Figure 5. Nonlinear mapping of the LP based cepstral coefficients of five 
gait pattern 

Alternately, speech processing literature suggests that cepstral 
features can be obtained using a set of bandpass filters. This 
approach is more robust than obtaining the cepstral coefficients 
from the LP coefficients and is used in the work reported in this 
paper. Here the cepstral features are extracted by first taking the 
DFT (256 point DFT) of the signal.  

 (5) 

where X is the frequency domain signal, x is the time domain 
signal, i represents the different axis(1 – antero-posterior, 2- 
medio-lateral, 3 - vertical).  

The spectral magnitude coefficients are then grouped into 
bands. In each of the axes, three bands are used. The bandwidths 
are fixed where the first band is used to capture the gravitational 
acceleration, the second band is used to capture the energy of the 
foot strike cycle and the third band is used to capture the other 
acceleration components such as muscle vibrations and the 
rotational acceleration components. The gravitational band was 
selected at 0-0.5Hz where previous researchers have selected a 
number of different values from 0 to 0.25-0.5Hz [10-12]. The main 
foot strike band was selected from 0.5 Hz-3.5 Hz. The main basis 
for bandwidth selection was a separate experiment where the 
subjects were asked to walk at various speeds from 3km/h to 
7km/h on a treadmill and it was found that the foot strike 
frequency lies between 1 Hz to 3 Hz (Figure 6). The artefacts 
bandwidth was selected to be from 3.5 Hz to 13.5 Hz because from 
observations (see Figure 6), there are little energy that lies beyond 
13.5 Hz. 

Figure 6. FFT of flat gait pattern with different speed (solid – 3km/h; 
dotted – 7km/h).  

Figure 7 shows an example of this band grouping. The 
bandwidth specification is listed in Table 1. 

 Table1. The bandwidth specifications of the bandpass filters 
Feature 
Number Axis Bandwidth no. 

Bandwidth
(Hz)

1
X

1(gravitational) 0.5 
2 2(peak) 3
3 3(artefacts) 10
4

Y
1(gravitational) 0.5 

5 2(peak) 3
6 3(artefacts) 10
7

Z
1(gravitational) 0.5 

8 2(peak) 3
9 3(artefacts) 10

We hypothesized that the artefacts in the signal for the 
different walking patterns are different. Hence, we propose the use 
of zero crossing counts in the artefacts band (3rd band). The zero 

ossi nts cr ng cou can be estimated as:  

  (6) 

where i=1,2,3  is the axis label, N is the window size, and s is the 
time domain signal. 

Figure7. Bands allocation for the Antero-Posterior acceleration

The cepstral coefficients obtained from the filterbank are able 
to separate the five classes very well as can be seen from Figure 8. 

Figure8. Nonlinear mapping of the filterbank  based cepstral coefficients of 
five gait pattern 
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5. DATABASE 

The accelerometric data used in this work was collected from 50 
participants (13 females and 37 males) aged between 21 and 65 
(with a mean age of 30 years). Each participant was asked to walk 
10 times over a set course of flat ground for a distance of 43 m, up 
and down an incline of approximately 10o for a distance of 22 m 
and up and down a flight of 16 stairs. A triaxial accelerometer 
(triax) was placed on the right side of the waist, with the X-axis 
being approximately aligned with an anterio-posterior movement, 
the Y-axis with sideways movement, and the Z-axis with vertical 
movement.

6. EXPERIMENTS AND DISCUSSIONS 

A classification experiment was performed using the cepstral 
features extracted from the LP model (equation 2-3) and an 8th

mixture Gaussian Mixture Model (GMM) as a backend. This 
system was then compared to another one using cepstral features 
extracted from the bandpass filters (Table 2). The subjects were 
divided into two groups, with 40 subjects for training and 12 
subjects for testing. 

Table2. Classification accuracy of different features using GMM  

Movement Classification Accuracy (%) 
 LP Cepstral Filterbank 

Cepstral 
Flat 80.4 90.5 

Slope Down 85.5 87.6 
Slope Up 78.9 94.5 

Stairs Down 90.5 98.7
Stairs Up 83.9 96.1

Table 2 gives the classification accuracy for each of the five 
gait patterns for both LP based cepstral features and filterbank 
based cepstral features. It can be seen that the filterbank based 
cepstral features performed better than the LP based ones. This is 
also supported by the nonlinear mapping plots shown in figures 5 
and 8. 

A second experiment involving addition of zero crossing 
counts (ZCC) to the cepstral features obtained using the filterbank 
for the classification was also performed. When both features were 
combined it can be seen from Table 3 that the classification 
accuracy is higher than when either one is used on its own.  

Table3. Correct classification rate of adding ZCC features  

Features Classification Accuracy 
(%) 

ZCC 48 
Filterbank Cep 93.5 

Filterbank Cep + ZCC 95 

As for comparison, [13] has implemented a spectral based features 
where the whole FFT points are transformed into spectral 
coefficients using the DCT to be used for gait classification. It has 
been reported that an accuracy of 86% was achieved with 60 
features. The method described in this paper has fewer features and 
better classification accuracy.   

7. CONCLUSION 

This paper shows that the accelerometer signal derived from a 
waist worn triax can be modelled using an LP model. Cepstral 
features derived from the LP model can be used to classify the five 
pre-specified gait patterns. The experimental results also show that 
cepstral features obtained from bandpass filters result in a high gait 
pattern classification rate. When combined with zero crossing 
count features from the artefact filter bands the classification rate 
is improved further. Further investigations are underway to study 
the robustness of these features on a larger database. 
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