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ABSTRACT

An important parameter in analysis of physiological tremor is the
diagnosis and study of neurological disorders. The instantaneous
tremor frequency (ITF) is an important parameter in tremor analy-
sis. This paper proposes a novel stochastic filter, the multiple ex-
tended Kalman filter (M-EKF), for tracking of ITF from neural mi-
croelectrode recordings. The M-EKF mitigates degradations in fil-
ter performance resulting from a mismatch between assumed initial
conditions and those of a particular realization of a stochastic sys-
tem. Specifically, the M-EKF is comprised of a bank of extended
Kalman filters (EKF), each initialized with different conditions, se-
lected according to the unscented transform. The final estimate is a
weighted average of the individual estimates provided by each EKF
where the weights reflect how closely the assumed EKF initial con-
ditions match those of the true system. The M-EKF is applied to a
synthetic tremor model to display its superior performance to that of
the EKF and the unscented Kalman filter.

Index Terms— Tremor frequency, state-space model, nonlinear
estimation, unscented transform, extended Kalman filtering.

1. INTRODUCTION

Tremor is an involuntary, quasi-periodic, oscillation of one or more
muscles of the body, often expressed as a symptom of various neu-
rological diseases [1]. Tremor activity is therefore a principal aspect
of the diagnosis and study of neurological movement disorders. This
paper addresses the problem of tracking or continuous estimation of
the instantaneous tremor frequency (ITF), an important parameter in
tremor analysis [2].

The work of [3] proposes the use of the stochastic filtering frame-
work for ITF tracking from binary spike trains observed in neural
microelectrode recordings (MER). In this approach, domain knowl-
edge, such as dynamics of the system and statistical characteristics
of observation noise, are incorporated into the estimation process
through a state-space description of the system. The following state-
space model is considered herein

x(k) = g(x(k − 1)) + u(k), (1)

z(k) = h(x(k)) + v(k), (2)

where x(k) is a state vector containing all variables required to
describe system dynamics, z(k) is the observed measurement vector,
u(k) ∼ N (0,Q(k)) and v(k) ∼ N (0,R(k)) are white Gaussian
process and measurement noise, respectively. The functions g(·)
and h(·) are nonlinear and real valued, and k is the discrete time
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index. The filter estimate at time step k given the measurement set
{z(1), . . . , z(j)} is denoted as bx(k|j).

Given this state-space formulation, well-known stochastic fil-
ters can be used to estimate the unobservable state vector from noisy
measurements over time [4]. When the system and measurement
equations are both linear and noise distributions are Gaussian, the
Kalman filter provides the optimal estimate in the minimum mean
square error (MMSE) sense. In the case of nonlinear system or mea-
surement equations, the optimal estimate cannot be directly deter-
mined and the extended Kalman filter (EKF) [4], unscented Kalman
filter (UKF) [5], and the particle filter [6] are commonly used to pro-
vide suboptimal solutions. Since ITF is nonlinearly related to the
measurements obtained from neural recordings, the work of [3] uses
an extended Kalman smoother as the tracking solution.

The model of (1) describes the evolution of a stochastic sys-
tem in a recursive manner and therefore requires specification of ini-
tial conditions. Due to the stochastic nature of the system, resulting
from the presence of noise and modeling inaccuracies, the initial
state of the system is assumed to be random and generally modeled
as a Gaussian random variable with distributionN (bx(0|0),P(0|0)).
The mean value bx(0|0) is used as the initial state in the Kalman filter
and its variants. However, discrepancies between the assumed con-
ditions by the filter and the true realization of state lead to a degrada-
tion in accuracy of the estimates computed by the filter. To mitigate
such adverse effects, this paper proposes a novel stochastic filter, the
multiple-EKF (M-EKF) for nonlinear estimation problems such as
ITF tracking. As shown in Figure 1, the M-EKF is comprised of a
bank of EKFs running in parallel, initialized with a different set of
initial conditions. The estimates provided by these filters are then
fused using a weighted average where the weights are proportional
to how well the respective initial conditions represent the true con-
ditions.

The rest of this paper is organized as follows. Section 2 dis-
cusses the effect of initial conditions, Section 3 introduces the details
of the M-EKF algorithm, Section 4 applies the M-EKF to the prob-
lem of ITF tracking, and Section 5 concludes the paper and provides
directions for future work.

2. EFFECT OF INITIAL CONDITIONS ON THE EKF

To motivate the development of the M-EKF, this section examines
the effect of initial conditions on the EKF. The EKF [4] uses a first
order Taylor series expansion of the functions g(·) and h(·) in (1)
and (2) to obtain a linear approximation to the state-space descrip-
tion of the system. Define the Jacobians G(k) and H(k) as follows

G(k) =
∂g

∂x

˛̨̨
˛

bx(k−1|k−1)

and H(k) =
∂h

∂x

˛̨̨
˛

bx(k|k−1)

(3)
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Fig. 1. Multiple-EKF System Level Operation.

Then, the approximated linear version of the state-space model (1)
and (2) is given as

x(k) = G(k)x(k − 1) + u(k), (4)

z(k) = H(k)x(k) + v(k). (5)

The extended Kalman filter [4], shown in Figure 2, can now be
used with the linearized system in (4) and (5). Note that while the
Kalman filter provides the optimal MMSE estimate in the case of
linear and Gaussian systems, the EKF estimates are suboptimal due
to the un-modeled dynamics (UMD) arising from linearization er-
rors. It can be seen that, in the case of the measurement equation (2)
the following difference

UMD = h(bx(k|k − 1))−H(k)bx(k|k − 1) (6)

is not represented within the EKF framework.

Inputs:
Initial state distribution: N (bx(0|0),P(0|0))
Measurement record: {z(1), . . . , z(K)}

Outputs:
State estimate at time k: bx(k|k)
Estimation covariance at time k: P(k|k)

EKF:
Predictionbx(k|k − 1) = g(bx(k − 1|k − 1))
P(k|k − 1) = G(k)P(k − 1|k − 1)G(k)T + Q(k)

Update
y(k|k − 1) = z(k)− h(bx(k|k − 1))
S(k|k − 1) = H(k)P(k|k − 1)H(k)T + R(k)
K(k) = P(k|k − 1)H(k)T S(k|k − 1)−1

Estimationbx(k|k) = bx(k|k − 1) + K(k)y(k|k − 1)
P(k|k) = (I −K(k)H(k))P(k|k − 1)

Fig. 2. Extended Kalman Filter Algorithm.

Now consider the scenario where the initial conditions assumed
by the EKF, namely bx(0|0), is significantly different than the ini-
tial conditions of a particular realization of the dynamic stochastic
system. We define the criterion for mismatched initial conditions as

||x(0)− bx(0|0)||2 � trace{P(0|0)}. (7)

The concept of such mismatch is illustrated in Figure 3 for the
two dimensional tremor model described in Section 4.1. This figure
depicts 1000 points drawn as x(0) ∼ N (bx(0|0),P(0|0)) indicating
the cases where a mismatch in initial conditions occurs.
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Fig. 3. Distinction between matched and mismatched realizations.

Since the extended Kalman filter performs its initial linearization
around the mean bx(0|0), a mismatch in initial conditions increases
the linearization error and the un-modeled system dynamics. Due to
the recursive nature of the filter, any errors in the initial state propa-
gate to subsequent estimates and negatively impact the performance
of the filter. To mitigate the effect of such errors, the M-EKF uses a
bank of EKFs, each performing linearization around a different set
of initial conditions. The estimates from these EKFs are then fused
together in a weighted average.

3. THE M-EKF

3.1. Initial Conditions

The M-EKF is composed of a bank of (2n + 1) extended Kalman
filters running in parallel, where n is the dimension of the state vec-
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tor x(k). Each EKF is initialized with a different set of initial condi-
tions, chosen according to the unscented transform (UT) [5]. The UT
represents a Gaussian distribution by a set of finite sigma points and
associated weights. These sigma points become ideal initial condi-
tions for the bank of EKFs since they cover the Gaussian distribution
effectively (see Figure 3).

To generate our set of initial conditions we apply the UT to
N (bx(0|0),P(0|0)) as follows:

X0 = bx(0|0) (8)

Xi = bx(0|0) +
“p

(n + κ)P(0|0)
”

i
i = 1, . . . , n (9)

Xi+n = bx(0|0)−
“p

(n + κ)P(0|0)
”

i
i = 1, . . . , n (10)

where κ is the UT secondary scaling parameter, and (·)i denotes the
ith row of a matrix. It is shown in [5] that (n + κ) = 3 performs
well for Gaussian distributions.

To initiate the M-EKF, each sigma point Xi is paired with the
common covariance P(0|0). This couple is used as the initial condi-
tions for one of the (2n + 1) extended Kalman filters. For example,
the third EKF is initialized with N (X3,P(0|0)). Consequently, the
first EKF is identical to a standard extended Kalman filter, as the first
sigma vector defined in (8) is the mean bx(0|0).

3.2. The M-EKF Algorithm

The bank of extended Kalman filters run in parallel, each generating
their own estimates bxi(k|k) and Pi(k|k). The estimates are fused
through a weighted average at each time step k to generate the final
estimates bx(k|k) and P(k|k). The algorithm is outlined in Figure 4.

The weights wi(k|k) are updated in a linear, autoregressive man-
ner, using the parameter λi(k|k − 1). This value represents the
amount of confidence associated with the ith EKF instance at time
k. The innovations sequence yi(k|k−1) and covariance Si(k|k−1)
represent the prediction error of each filter, and are utilized to calcu-
lated λi(k|k − 1) (see Figure 4).

The M-EKF and UKF differ in two respects. First, the UKF
utilizes the unscented transform weights which are designed such
that the first sigma point weighs more than the peripheral sigma
points [5]. Since the vicinity of a random realization x(0) to any
of the sigma points is unknown (see Figure 3), the M-EKF begins by
assigning equal weights to wi(0|0).

Second, although the M-EKF employs the unscented transform
to generate its initial starting vectorsXi, it is fundamentally different
than the unscented Kalman filter. The unscented transform is used
only once to initialize the bank of extended Kalman filters within the
M-EKF. Each EKF continues by linearizing the state-space model
according to its own prior estimates and predictions. Contrarily, the
UKF attempts to avoids linearization by propagating a determinis-
tically chosen set of sigma points through the nonlinearities of the
system [5]. Thus, the unscented transform is applied at every time
step k. This approach aims at escaping the Jacobian calculations as-
sociated with the EKF, yet the computational complexity of the UKF
proceeds to be the same order as that of the EKF [5]. The complexity
of the M-EKF is thus (2n + 1) times that of the EKF.

4. RESULTS AND DISCUSSION

4.1. Tremor Model

The following tremor model is adopted from the tremor models de-
scribed in [3], and [7]. It is very similar to the model described in [7],

Inputs:
Initial state distribution: N (bx(0|0),P(0|0))
Measurement record: {z(1), . . . , z(K)}

Outputs:
State estimate at time k: bx(k|k)
Estimation covariance at time k: P(k|k)

Initial Conditions:
Define initial weights: wi(0|0) = (2n + 1)−1

M-EKF:
Step 1: Choose 2n + 1 starting vectors Xi (8-10)
Step 2: Initiate 2n + 1 extended Kalman filters with

starting vectors (Xi,P(0|0))
At each time sample k:
For each EKF:
Calculate bxi(k|k) and Pi(k|k)

Calculate λi(k|k − 1) = det(Si(k|k − 1))−
1
2 ×

exp
˘− 1

2
yT

i (k|k − 1)S−1
i (k|k − 1)yi(k|k − 1)

¯
Calculate Ωi = λi(k|k − 1)wi(k − 1|k − 1)

Normalize weights as wi(k|k) = ΩiP2n+1
i=1 {Ωi}

Merge all 2n + 1 estimates:

Calculate bx(k|k) =
P2n+1

i=1 wi(k|k)bxi(k|k)

Calculate P(k|k) =
P2n+1

i=1 wi(k|k)[Pi(k|k) +
{bx(k|k)− bxi(k|k)}{bx(k|k)− bxi(k|k)}T ]

Fig. 4. Multiple-EKF Algorithm.

yet with some elements based on the authors’ antecedent paper [3].
The hidden state vector x(k) = [θ(k) f(k)]T contains the instan-
taneous phase θ(k) and frequency f(k) of the tremor signal. The
state-space model is described as,

x(k) =

»
θ(k − 1) + 2πTsf(k − 1) mod2π

γ(f(k − 1)− f) + f

–

+

»
0
1

–
u(k) (11)

z(k) = a sin(2πTsfk + θ(k)) + v(k) (12)

where both u(k) ∼ N (0, q) and v(k) ∼ N (0, r) are zero-mean
white Gaussian processes, and the mod2π operation is applied to all
of the first row.

Parameter values required for signal generation and M-EKF op-
eration are summarized in Table 1. It is assumed that all parameters
are known to the designer of the filter, although the amplitude of the
measurements can also be estimated [3].

Table 1. Summary of Parameters for Tremor Model.

Name Symbol Value
Frequency variance q 0.006
Measurement variance r 0.6
Frequency bandwidth control parameter γ 0.9987
Sampling interval (seconds) Ts 1/1000

Amplitude of measurement sinusoid a
√

2

Mean frequency value (Hz) f 6

Mean theta value (radians) θ 0
Initial state covariance P(0|0) 2I
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4.2. Performance Criterion

To adhere to the work of [3,7], we use the normalized mean-square-
error (NMSE) as the performance metric to measure the accuracy of
the M-EKF frequency tracker. NMSE(k) is defined as

NMSE(k) =
1

MC

MCX
i=1

(f(k)− bf(k|k))2

(f(k)− f)2
, (13)

where f(k) is the true frequency, bf(k|k) is the estimated frequency,
and f is the mean frequency. MC is the number of Monte-Carlo
simulations. An NMSE(k) value greater than one reflects that the
accuracy of the frequency tracker is worse than a basic mean estima-
tor, whereas a NMSE(k) value of zero implies exact tracking of the
true frequency [7].
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Fig. 5. Performance of the M-EKF compared to the EKF and UKF.

4.3. Results

To generate synthetic tremor recordings, 100 random realizations of
x(0) were drawn from N (bx(0|0),P(0|0)) and propagated through
the state-space model described in equations (11) and (12).

Figure 5(a) presents a single data track with mismatched realiza-
tion x(0) plotted against the M-EKF, EKF, and UKF estimates. The
M-EKF performed noticeably better than the EKF and UKF, partic-
ularly in the early stages of tracking. The averaged NMSE(k) plots
featured in Figure 5(b), demonstrate the performance of the three
filters averaged over 100 Monte Carlo simulations.

Although the state equation (11) is linear, the observation equa-
tion (12) is highly nonlinear with the observation of the instanta-
neous phase θ(k) through a sinusoid. The EKF introduces non-
negligible linearization errors in such situations due to the poor rep-
resentation of such nonlinearities through first-order Taylor series.
The M-EKF performance eventually merges with that of the EKF.
This is expected as the effect of initial conditions fades as time pro-
gresses, reducing the M-EKF into a bank of extended Kalman filters
with equal weights and identical outputs. At this point, it is feasible
to collapse the bank of EKFs and continue with a single EKF.

Comparison the UKF and EKF in Figure 5(b) shows that, on
average, the two perform similarly. The study of [8] explains the
unsatisfactory performance of the UKF in state-space models with
non-scalar state vectors, such as this tremor model.

5. CONCLUSIONS

This paper proposed a new stochastic filter, the multiple extended
Kalman filter. The M-EKF uses a bank of EKFs initialized with dif-
ferent initial conditions to mitigate the adverse effects of mismatches
between assumed initial conditions of the filter and a true realiza-
tion of a state-space model. As a specific application, the M-EKF
was applied to the estimation of instantaneous tremor frequency in
MERs. These observations demonstrate the potential of the M-EKF
in decreasing the effects of initial condition mismatches in nonlinear
tracking problems. Future work will include experimentation with
clinical data and comparisons against other estimation solutions.
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