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ABSTRACT

In this paper we propose a constrained version of Mumford-
Shah’s[1] segmentationwith an information-theoretic point of
view[2] in order to devise a systematic procedure to segment
brain MRI data for two modalities of parametric T1-Map and
T1-weighted images in both 2-D and 3-D settings. The incor-
poration of a tuning weight in particular adds a probabilistic
�avor to our segmentation method, and makes the three-tissue
segmentation possible. Our method uses region based active
contours which have proven to be robust. The method is val-
idated by two real objects which were used to generate T1-
Maps and also by two simulated brains of T1-weighted data
from the BrainWeb[3] public database.

Index Terms— Active contour, Region-based active con-
tour, Mumford-Shah, T1-Map, T1-weighted image

1. INTRODUCTION

Brain segmentation has been a popular research topic for a
long time and numerous works have plunged into this study.
Because manual tracing of the boundaries of tissues in the
brain is labor intensive and unrealistic for large amount of
data, an automatic or semiautomatic segmentation technique
becomes very helpful for either visualization or diagnosis
purposes. Different modalities, such as T1-weighted, T2-
weighted, or PD (Proton Density) images, have been used
for different segmentation methods. T1-weighted images,
because of their good contrast[4], have been widely tested for
various segmentation methods[5, 6]. A parametric T1-Map
is an image of pure T1 (Spin Lattice Relaxation Time) value
which is different from a T1-weighted image. The relation-
ship between T1 and several diseases, such as schizophrenia
or sickle cell disease, has been studied[7], and T1 may be
used as a possible indicator of pathology. The change of T1

values for certain voxels in the brain (i.e. the change from
one tissue to another) over time, in particular, may be char-
acterized as early indicators of possible diseases. Therefore,
the segmentation of a parametric brain T1-Map may highlight
pathology unseen by other approaches.

Numerous works have studied the segmentation of cor-
tical surfaces in the brain. The three tissues: white matter
(WM), gray matter (GM), and cerebrospinal �uid (CSF) con-
stitute the main parts in the brain. The goal is to �nd their re-
spective boundaries. Different methods have been proposed
to achieve this goal, and our method falls in the active con-
tour category[6, 4]. It is an adaptive version of Mumford-
Shah’s model[1] to systematically segment different tissues
in the brain.

The paper is organized as follows. In section 2 we state
our proposed model, which has two adaptations to Mumford-
Shah’s original energy functional. In section 3 we illustrate
our proposed systematic methods to segment a brain T1-Map.
In section 4 we show the segmentation results of T1-Maps,
and also for T1-weighted data in the 3-D setting, to show the
generality of our method, both with validations. At last in
section 5 we conclude the paper.

2. PROPOSEDMODEL FOR SEGMENTATION

As an alternative to looking for edge information such as the
gradient, region-based active contours minimize energy func-
tionals to detect homogeneous regions. We will use a modi-
�ed Mumford-Shah[1] energy functional:

E(fRin , fRout , �C) =∑
i=in,out

βi

∫
Ri

{
(fRi −G(I))2 + ν ‖∇fRi‖2

}
dx

+α

∮
�C

ds, (1)

where fRi approximate a function G(·) applied of the im-
age I for region Ri, i = in or out. fRi is smooth within
each region Ri, but not across the boundaries; �C denotes the
region boundaries, which is the contour of interest in this pa-
per, and 0 ≤ βi ≤ 1 are weights such that βin +βout = 1. By
minimizing this functional we obtain a function fRi which
is faithful to the image (�rst term) and smooth within each
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region but not across the boundaries (second term), while pe-
nalizing excessive length of the boundaries (last term).

Two adaptations in Eq. (1) for the problem of interest con-
stitute the novelty of the proposed technique. First is the func-
tion G(·) applied on to image I instead of the image itself.
The �rst is motivated by the work of Unal et al.[2]. Specif-
ically, an information-theoretic approach for maximizing a
probabilistic disparity measure, Jensen-Shannon (JS) diver-
gence, was proposed. A constructed function G(·) character-
izes the property of the probability density function (PDF) of
the image intensity such as skewness, kurtosis, all relative to
a Gaussian. A proper choice of G(·) will capture the statisti-
cal characteristics of the data and will hence achieve a good
segmentation.

The second contribution is the introduction of a selective
weight favoring erring towards one tissue type or another. The
assigned weight βin(out), in essence provides a probabilistic
assignment to the segmented regions. Enhancing the weight
of the interior of the evolving contour, βin, is tantamount
to penalizing the degree of smoothness of the approximated
function. This would yield smaller segmented regions which
is likely to be more faithful to the image and of ”purer” tis-
sues.

As for the approximated function fRin(out) , we adopted
a fast Mumford-Shah implementation proposed by Alvino et
al.[8]. They use a linear combination of a set of basis func-
tions to represent the approximated function. With their so-
called linear heat equation basis and the change from I to
G(I), we have

fRi = γ1,iG(I) + γ2,imean(G(I)), (2)

where i = in and out, mean(·) is the average function, and
the coef�cients γj,i’s may be derived in a similar manner as
outlined in [8].

Substituting Eq. (2) into Eq. (1) and using traditional vari-
ational calculus methods, the evolution of the curve may be
derived as

∂ �C

∂t
=

{
βout

[
(fRout −G(I))2 + ν ‖∇fRout‖2

]

−βin

[
(fRin −G(I))2 + ν ‖∇fRin‖2

]}
N

−ακN , (3)

where κ denotes the curvature of the contour �C, t an arti�cial
time parameter, and N the outward normal of the contour.

3. SEGMENTATION OF A PARAMETRIC BRAIN
T1-MAP

We assume a binary brain mask has been obtained to get rid of
everything except for the three tissues, WM, GM, and CSF, in
the brain. Notice that the curve evolution corresponding to the
energy introduced in section 2 always results in a ”binary seg-
mentation”, where we will have regions inside (foreground)

and outside (background) the contour(s). We cannot segment
the three tissues at once. We may however tune the weights
in penalizing the error between the data term and the approx-
imated function (Eq. (1)) differently to segment one tissue at
a time, analogous to ”peeling an onion”.

For ease of explanation we illustrate our T1-Map segmen-
tation procedure for a hard segmentation of three tissues, and
the probabilistic segmentation can be obtained by varying the
weights around the value of the trained weight, which will
be demonstrated in section 4. A T1-Map segmentation pro-
cedure consists of three steps, where the �rst two steps are
to evolve the contours by minimizing the energy in Eq. (1)
with different weights, and the third step is just a simple sub-
traction. The procedure is: 1) treat WM as the foreground,
everything else as the background, and let βin be the trained
weight βin,WM in Eq. (1) to segment WM in the interior re-
gion of the contour, 2) treat WM and GM as the foreground,
CSF and everything else as the background, and let βin be
the trained weight βin,CSF in Eq. (1) to obtain CSF in the
exterior region of the curve �ltered by the brain mask, and 3)
GM is obtained by subtracting the whole brain by WM and
CSF. This procedure is based on the anatomical observation
that GM is enclosed by CSF and separates CSF from WM[4],
such that we may peel off one layer at a time.

The choice of function G(I) in Eq. (1), which is chosen
to better capture the statistical properties of the T1-Map, will
be shown in section 4. The value of βin,WM and βin,CSF are
determined through a training process. Suppose an expert’s
manual segmentation is regarded as the ground truth. If Re

denotes the segmentation region by the expert, and Rβin de-
notes the segmentation region by the weight βin with some
�xed G(I), for some tissue, then the value of βin,tissue is de-
termined by minimizing

βin,tissue = argmin
βin

{
1− |Re ∩Rβin |

|Rβin |+ |Re| − |Re ∩Rβin |
}

,

(4)
where |R| denotes the number of pixels in region R. The
�rst term inside the bracket is overlap metric (OM)[6]. It is
commonly used to validate the segmentation performance –
the closer to 1 the better the performance.

4. EXPERIMENTAL RESULTS

4.1. Segmentation of T1-Map

16 slices of T1-Maps are taken across different transverse
planes, but only slices 5 through 15 are used for segmen-
tation because they cover suf�cient amounts of WM, GM
and CSF and are least affected by RF (Radiofrequency)-
inhomogeneity. The function G(I) introduced in Eq. (1) is
empirically chosen as the cubic function I3, which character-
izes the skewness of a PDF. Moreover, βin,WM and βin,CSF

are obtained by training according to Eq. (4) based on an ex-
pert’s manual segmentation of one subject (training subject).
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They are βin,WM = 0.93 and βin,CSF = 0.53 respectively.
The same values are then applied on the other subject (test-
ing subject). The segmentation of a T1-Map is obtained by
evolving contours according to Eq. (3).

The curve evolution is based on gradient �ow, and thus the
�nal result depends on the initialization. A T1-Map does not
enjoy the luxury of good contrast compared to a T1-weighted
image. A T1-weighted image exhibits an intensity histogram
such as that shown in Fig. 1(a), and one may carry out the
spectral analysis to threshold the image as an initialization[6,
9]. T1-Map, on the other hand, does not have contrast as good
as that shown in Fig. 1(b). We therefore initialize with ei-
ther uniformly spaced squares or manually placed seeds (by
mouse clicking and dragging on the image). Both methods
give similar performance with manual seeding slightly better,
and therefore we will show the results with manual seedings
for T1-Map.
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Fig. 1. Histogram of a (a) T1-weighted image and a (b) T1-
Map.

Fig. 2. . Segmentation result of WM (�rst row) and GM
(second row) for the testing subject at slice number 10 - 13.

Fig. 2 shows some selective segmentation results of WM
and GM (CSF will be the brain mask subtracting WM and
GM) for the testing subject. The validation of the results
would require comparison with manual segmentations. The
commonly examined metrics which determine the perfor-
mance of a segmentation are TP (true positive), FP (false
positive), and OM (overlap metric)[6, 4]. Fig. 3 shows two
overlap metric curves (OM versus slice number) of WM and
GM segmentation for the training subject (the testing subject
exhibits a similar result). The �rst curve corresponds to the
segmentation of T1-Maps with our tuned weights and the

cubic function G(I) = I3, and the second corresponds to the
segmentation with the function G(I) = I and tuned weights
(βin,WM = 0.9 and βin,CSF = 0.7). The results show that
with a different function G(I) = I , the performance of WM
segmentation is comparable for these two functions, however
there is a signi�cant difference for CSF segmentation, thus
affecting GM segmentation. The choice of cubic function I3

outperforms I tremendously for GM segmentation (as well as
for CSF). It demonstrates that the former better characterizes
the statistical properties of the data, in this case the skewness.
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Fig. 3. Overlap metric of (a) WM and (b) GM segmentations
for T1-Maps with cubic function G(I) = I3 and the data
itself G(I) = I , both with tuned weights.
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Fig. 4. (a) TP (True Positive) and (b) FP (False Positive) of
WM segmentation for different weights βin.

Fig. 4 shows TP and FP for WM segmentation with differ-
ent weights βin around the value of βin,WM , to demonstrate

the notion of our probabilistic segmentation. TP=
|Rβin

∩Re|
|Re| ,

and FP=
|Rβin

|−|Rβin
∩Re|

|Re| , where Re and Rβin are the expert-
segmentations and those obtained using βin respectively
while |R| denotes the area of region R. When the weight
increases, so does the penalty for the error between the data
term and the approximated function (Eq. (1)). Therefore TP
and FP decrease correspondingly, and vice versa.

4.2. Segmentation of T1-weighted Images

In this section we would like to show the generality of our
proposed segmentation method by testing it on a different
modality in the 3-D setting. We apply it to a more often ex-
ploited modality: T1-weighted images. The same procedures
are carried out as in section 3 except that now the images are
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WM GM CSF
TP(%) 89.8 91.8 85.1
FP(%) 6.9 12.5 9.6
OM 0.84 0.817 0.776

Table 1. Different validation metrics for the testing brain of
T1-weighted modality from BrainWeb.

collated into volumes and the active contour is replaced by
an active surface. We test it on an open database accessible
online- BrainWeb[3]. It is a simulated brain MRI database
thus ground truth is already provided. We may therefore pre-
process the data to �lter out everything except for the three
main tissues, WM, GM, and CSF, in the data.

We test our segmentation method on two (one as the train-
ing subject and the other as the testing subject) brain MRI
datasets of T1-weighted modality from BrainWeb. The im-
ages are of 1mm slice thickness, 3% noise level, and 20%
RF intensity non-uniformity (INU) and the size of each sub-
ject is 217×181×106. For this particular modality, since the
contrast between different tissues is high, we carry out the
histogram analysis and apply the threshold method similar to
[6] for initialization. The function G(I) is still chosen as I3,
and βin,WM and βin,CSF are obtained by training as 0.3 and
0.2 respectively. The validation metrics for the testing subject
are shown in Table 1. The results show that it achieves a high
performance of OM around 0.8 for three tissues. Fig. 5 shows
the segmentation results for the testing brain.

(a) (b)

Fig. 5. 3-D segmentation results of (a) WM and (b) GM for
the brain MRI T1-weighted data from BrainWeb.

5. CONCLUSION

In conclusion, we propose an adapted Mumford-Shah type
energy functional for segmentation. The two adaptations: 1)
a function G(I) is able to better characterize the statistical
properties of the data to achieve better segmentation results,
and 2) the tuning weights βin(out) are able to segment the
brain tissues in a probabilistic fashion and achieve three-tissue
segmentation. The method is validated both for T1-Maps and
T1-weighted images, in both 2-D and 3-D settings, and the
results show high performance with our method.

6. REFERENCES

[1] David Mumford and Jayant Shah, “Optimal approxima-
tions by piecewise smooth functions and associated varia-
tional problems,” Comm. Pure Appl. Math, vol. 42, 1989.

[2] Gozde Unal, Anthony Yezzi, and Hamid Krim,
“Information-theoretic active polygons for unsupervised
texture segmentation,” International Journal of Com-
puter Vision, vol. 62, pp. 199–220, 2005.

[3] BrwainWeb, “Mcconnell brain imag-
ing center, montreal neurological institute,”
http://www.bic.mni.mcgill.ca/brainweb/.

[4] Xiaolan Zeng, L.H. Staib, R.T. Schultz, and J.S. Duncan,
“Segmentation and measurement of the cortex from 3-d
mr images using coupled-surfaces propagation,” Medical
Imaging, IEEE Transactions on, vol. 18, no. 10, pp. 927–
937, Oct. 1999.

[5] C. Xu, D.L. Pham, M.E. Rettmann, D.N. Yu, and J.L.
Prince, “Reconstruction of the human cerebral cortex
from magnetic resonance images,” Medical Imaging,
IEEE Transactions on, vol. 18, no. 6, pp. 467–480, June
1999.

[6] Hua Li, Anthony Yezzi, and Laurent D. Cohen, “Fast 3d
brain segmentation using dual-front active contours with
optional user-interaction,” Computer Vision for Biomedi-
cal Image Applications, pp. 335–345, 2005.

[7] R. Grant Steen, Courtney Mull, Robert Mcclure,
Robert M. Hamer, and Jeffrey A. Lieberman, “Brain
volume in �rst-episode schizophrenia: Systematic review
and meta-analysis of magnetic resonance imaging stud-
ies,” The British Journal of Psychiatry, vol. 188, no. 6,
pp. 510–518, 2006.

[8] Christopher V. Alvino and Anthony J. Yezzi, “Fast
mumford-shah segmentation using image scale space
bases,” 2007, vol. 6498, p. 64980F, SPIE.

[9] Zu Y. Shan, Guang H. Yue, and Jing Z. Liu, “Au-
tomated histogram-based brain segmentation in T1-
weighted three-dimensionalmagnetic resonance head im-
ages,” NeuroImageVolume, vol. 17, no. 3, pp. 1587–1598,
2002.

420


