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ABSTRACT

Typically data acquired through imaging techniques such as

functional magnetic resonance imaging (fMRI), structural

MRI (sMRI), and electroencephalography (EEG) are ana-

lyzed separately. Each modality records brain structure and

function at different scales, and fusing information from such

complementary modalities promises to provide additional

insight into connectivity across brain networks and changes

due to disease. Recently, a number of methods have been

proposed for data integration and fusion of two brain imag-

ing modalities. We propose a new data fusion scheme based

on canonical correlation analysis that enables the detection

of associations across multiple modalities. Our multimodal

canonical correlation analysis (mCCA) scheme works at the

feature level using multi-set CCA to determine inter-subject

covariations across modalities. We apply mCCA to fMRI,

sMRI, and EEG data collected from patients diagnosed with

schizophrenia and healthy controls. Through data collected

from an auditory oddball task, we show that the fusion of

multiple modalities detects more specific associations as

compared to fusion of two modalities.

Index Terms— biomedical fusion, fMRI, sMRI, EEG,

canonical correlation analysis

1. INTRODUCTION

Brain imaging techniques such as functional magnetic reso-

nance imaging (fMRI), structural MRI (sMRI), and electroen-

cephalography (EEG) have made it possible to non-invasively

study the brain at different spatial and temporal scales. Each

of these modalities records specific facets of structure or

function and provides information that may either be unique

or common to other modalities. Typically, these are analyzed

separately, however, the fusion of multimodal information

promises to uncover new insights about the working of the

brain as well as to detect changes in the brain due to diseases

such as schizophrenia which has been shown to alter brain

structure, networks, and function. Brain imaging data types
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are intrinsically dissimilar in nature, making it difficult to ana-

lyze them together without making a number of assumptions,

most often unrealistic about the nature of the data. Instead

of entering the entire datasets into a combined analysis, an

alternate approach, which is used in data fusion techniques

such as the independent component analysis (ICA) based

joint-ICA (jICA) method [1], is used to reduce each modality

to a feature corresponding to a particular activity or structure

and then to explore associations across these feature datasets

through variations across individuals [2].

A number of approaches have been proposed to integrate

or fuse multi-task or multi-modal neuroimaging data. How-

ever, these have mostly been limited to two modalities or

to multiple datasets from the same modality. We propose a

novel data fusion method to combine information from mul-

tiple imaging modalities. Our method combines the feature-

level data fusion based on inter-subject covariations, which

we introduced in [3], and the multi-set canonical correlation

analysis, introduced by Kettenring in [4]. In this paper, we

examine the complementary information across fMRI, sMRI

(gray matter), and EEG data from healthy subjects as well as

subjects diagnosed with schizophrenia to detect areas of the

brain that are affected by the disease.

FMRI measures brain function indirectly by recording the

blood-oxygen level changes in the brain. EEG is a direct mea-

sure of the brain’s electric field through the scalp. Thus, fMRI

and EEG data both record brain function, however, fMRI has

localized spatial resolution and low temporal resolution while

EEG data has high temporal resolution but poor spatial local-

ization of sources. SMRI images the morphology of the brain

mainly the white matter, gray matter, and cerebrospinal fluid.

Brain structure underlies and hence impacts brain function.

Thus, these three modalities contain complementary informa-

tion and their fusion promises to increase the specificity of the

associations across structure and function.

Our multimodal canonical correlation analysis (mCCA)

scheme is based on a linear mixing model. It seeks to de-

compose each dataset into a set of components and their cor-

responding loading parameters or modulation profiles across

subjects. The components are spatial areas of activation in

the case of fMRI data, temporal segments in the case of EEG
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data, and spatial localization of structure in the case of sMRI

data. The associations across the modalities are based on

inter-subject covariations across modalities. This is a novel

application of CCA to the data fusion model since previous

applications of CCA to fMRI data [5, 6] utilize spatial cor-

relation rather than intersubject co-variances to perform data

decomposition. In this paper, we extend the mCCA model

to multiple datasets and we demonstrate the performance of

mCCA on fMRI, sMRI, and EEG data. The results show that

mCCA is a promising tool for the fusion of multiple modali-

ties and identifies interesting associations among brain struc-

ture and function.

2. MULTIMODAL-CCA FOR DATA FUSION

In this section, we explain the generic data model and steps

involved in mCCA while the specifics for the MRI and EEG

data sets used in our experiments are given in Section 3.

2.1. Generative model

The mCCA method can find associations among two or more

modalities and even though we describe the generative model

with respect to three datasets, it can be extended to multi-

ple datasets. We seek to decompose three datasets, X1, X2,
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Associations across modalities are detected through 

correlation between the modulation profiles

XfMRI = AfMRICfMRI

XEEG = AEEGCEEG

XsMRI = AsMRICsMRI

Fig. 1. Data model for fusion of brain structure and function

and X3 into three sets of components, C1, C2, and C3, and

corresponding modulation profiles (inter-subject variations),

A1, A2, and A3. The connection across the modalities can

be evaluated based on correlations among modulation profiles

across different modalities. Since the modulation profiles are

uncorrelated within each modality, in this respect a compo-

nent in one modality can be associated to only one component

in another modality. This one to one correspondence aids ex-

amination of associations across modalities.

The generative model is then given by

Xk = AkCk, for k = 1, 2, 3

where Xk ∈ R
s×vk , Ak ∈ R

s×d, and Ck ∈ R
d×vk , vk is the

number of samples in each modality (for e.g., in our appli-

cation the samples are the voxels for the MRI modalities and

the time points for the EEG) and s is the number of subjects

in Xk and d ≤ min(rank(Xk)), k =1,2,3. is the number of

components. As per the model, the modulation profiles given

by the ith column of the A matrices, i.e., a(i)
k (i = 1, . . . , d)

satisfy the following properties:

• The modulation profiles are uncorrelated within each

dataset and have zero mean and unit variance, i.e.,

AT
k Ak = I, k = 1, 2, 3 (1)

• The modulation profiles have non-zero correlation only on

their corresponding indices, and have correlation coeffi-

cients, r
(1)
k,l ≥ r

(2)
k,l , . . . ,≥ r

(d)
k,l , where r

(i)
k,l = a(i)

k

T
a(i)

l ,

i.e.,

AT
k Al = Rk,l, k �= l, k, l = 1, 2, 3 (2)

where Rk,l = diag(r(1)
k,l , . . . , r

(d)
k,l ).

2.2. mCCA of two datasets

In [3], we proposed to use canonical correlation analysis to

find the linear associations across two datasets. CCA is a

statistical method to summarize the correlation structure be-

tween two multivariate datasets by linear transformations [7].

The method finds the first pairs of canonical coefficient vec-

tors w(1)
1 and w(1)

2 , (w(1)
1 ∈ R

v1×1,w(1)
2 ∈ R

v2×1) that max-

imize linear combinations of the two datasets given by

max
w

(1)
1 ,w

(1)
2

corr(X1w
(1)
1 ,X2w

(1)
2 )

to obtain the first pair of canonical variates given by

a(1)
1 = X1w

(1)
1 and a(1)

2 = X2w
(1)
2 .

The remaining canonical variates can be calculated similarly,

with the additional constraints stated in (1) and (2). The CCA

problem can be posed as a constrained optimization problem

using Lagrange multipliers where d canonical covariates can

be calculated by solving one eigenvalue problem [8].

Thus, mCCA models the inter-subject covariations as the

canonical variates obtained by CCA and the least squares ap-

proximations of the components are given by

Ĉk = (AT
k Ak)−1AT

k Xk = AT
k Xk (from (1)), for k = 1, 2.

2.3. Extension to mCCA multiple datasets

The analysis of more than two modalities collectively can

help identify interesting associations across brain structure

and function. We extend the mCCA model to multiple

datasets using the multi-set CCA approach proposed in [4].

The canonical correlations can be obtained by optimizing a

number of cost functions proposed in [4], e.g., maximizing
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the sum of squared correlations among the canonical variates.

Consider the canonical variates Ak, where each is a linear

combination of the dataset Xk given as

Ak = Xkwk, k = 1, 2, . . . , K

and wk are the canonical coefficient vectors. We can sum-

marize the multi-set CCA procedure based on sum of squares

(SSQCOR) cost as:

• Stage 1

{w(1)
1 ,w(1)

2 , ...,w(1)
K } = arg max

w

⎧
⎨

⎩

K∑

k,l=1

|r(1)
k,l |2

⎫
⎬

⎭

• Stage 2 to d
for i = 2:d

{w(i)
1 ,w(i)

2 , ...,w(i)
K } = arg max

w

⎧
⎨

⎩

K∑

k,l=1

|r(i)
k,l|2

⎫
⎬

⎭

s.t. w(i)
k ⊥ {w(1)

k ,w(2)
k , . . . ,w(i−1)

k }, k = 1, 2, . . . , K

end

where d ≤ min(rank(Xk)). In [4], Stage 1 is solved by

first calculating the partial derivative function of the SSQ-

COR cost with respect to each w(1)
k and equating it to zero

to find the stationary point. Since the SSQCOR cost is a

quadratic function of each w(1)
k , the partial derivative is a

linear function of w(1)
k and hence, the closed form solution

can be derived. Starting from an initial point, each w(1)
k vec-

tor is updated in sequel to guarantee an increase in the cost

function and a sweep through all the w(1)
k constitutes one

step of the iterative maximization procedure. The iterations

are stopped when the cost convergence criterion is met and

the resulting w(1)
k vectors are taken as the optimal solution.

Stage 2 and higher stages are solved in a similar manner with

the cost function replaced by a Lagrangian incorporating the

orthogonality constraints on the canonical coefficient vectors.

3. EXPERIMENTS

In this section, we present an experiment on fMRI, sMRI,

and EEG data to examine associations between brain struc-

ture and function. We first describe the datasets, followed

by the pre-processing steps, namely, dimension reduction and

feature generation and then summarize the results.

3.1. Data

The MRI and EEG data are acquired from 36 subjects (22

healthy controls and 14 schizophrenia patients). The fMRI

and EEG data were collected while the subjects performed

an auditory oddball (AOD) task that required them to press a

button when they detect a particular infrequent sound among

three kinds of auditory stimuli. Details of the task design and

the participants are given in [9].

3.2. Feature generation

Lower-dimensional features of interest related to specific

brain activity or structure are first extracted from the data

[2]. For each subject, a feature vector is extracted from each

modality and entered into the fusion analysis at the group

level to detect associations across modalities.

For the fMRI data, we use the software package (SPM2)

[10] to preprocess the data (slice timing correction, motion

correction, spatial normalization, smoothing with a 10×10×
10 mm3 Gaussian kernel) and to obtain contrast images re-

lated to task which are used as features as in [11]. ICA is

used to remove ocular artifacts from the EEG data [12] and

the data is low pass filtered at 20 Hz. EEG features, event-

related potentials (ERPs) are calculated by averaging epochs

of EEG, time-locked to the event of correct target detection

from the midline central position (Cz) because it appeared to

be the best single channel to detect both anterior and posterior

sources for the given task. We label the ERPs based on their

ordinal position following the stimulus onset (e.g. P3 for the

third positive peak or N2 for the second negative peak). Prob-

abilistic segmentation of gray matter images calculated from

the sMRI data using SPM2 are smoothed with a 10× 10× 10
mm3 Gaussian kernel and used as features as in [11].

3.3. Dimension reduction

The number of variables in the feature datasets are much

larger than the number of observations. Transforming each

set of features to a subspace with smaller number of variables

helps improve the performance by preventing overfitting.

Dimension reduction is performed on each of the feature

datasets using singular value decomposition (SVD) of X1,

X2, and X3, which are given by

Xk = EkDkFk = [E
′
kE

′′
k ]DkFk, for k = 1, 2, 3.

where E
′
k contains the eigenvectors corresponding to the sig-

nificant eigenvalues in Dk, for k =1,2, and 3 respectively. E
′′
k

contains the eigenvectors that are treated as noise and hence

omitted from the next steps of the analysis. We perform CCA

on the dimension-reduced datasets given by

Yk = XkE
′
k, for k = 1, 2.

3.4. Results

We perform mCCA on the dimension reduced fMRI, sMRI,

and ERP data to estimate 15 sets of components containing

interesting associations across the modalities. Here, we high-

light the key findings from our experiments. We performed

t-tests on the three modulation profiles for each set of compo-

nents to check for associated functional and structural differ-

ences due to schizophrenia. Among the 15 components, one

set of profiles showed significantly different loadings (α ≤

387



fMRI (target) sMRI (gray matter)

0 200 400 600

−2
−1

0
1
2
3

milliseconds

m
ic

ro
vo

lts

N2

P3

ERP component
Average ERP

Fig. 2. Set of associated components estimated by mCCA

which showed significantly different loading for patients ver-

sus controls. FMRI and sMRI activation maps are thresholded

at Z = 3

0.05) across treatment groups for all three modalities (load-

ing for controls was higher than that for patients). The cor-

responding sources for this component set is shown in Fig. 2.

The fMRI and sMRI maps are thresholded based on Z-score,

i.e., the normalized activation levels in each map. The fMRI

component shown in Fig. 2 shows activations in the motor

and temporal lobes. The sMRI component shows activations

in the temporal and frontal lobes as well as slight activation

in the motor areas. The EEG shows a large variation across

the N2/P3 complex. These results show that subjects with

schizophrenia have less functional activity and less gray mat-

ter and also a large part of the ERP response appears to be

affected. These findings are consistent with previous studies

on schizophrenia, many of which implicate temporal lobe in

fMRI and sMRI and also the P3 response in ERP. This study

suggests a common linkage between the three findings.

Additionally, we perform mCCA on the fMRI and sMRI

datasets while excluding the EEG data. Comparing the re-

sults of the three way analysis with those from the two way

analysis, we find that for both experiments the areas detected

in the fMRI and sMRI component are very similar for the

component that showed significant differences between the

two groups, however, the areas detected in the sMRI compo-

nent are smaller in size in the three way analysis. This is an

expected result since including the EEG data in the analysis

would increase the specificity of the findings to areas asso-

ciated with the task. Performing CCA on multiple datasets

can be more restrictive since we are requiring covariation of

all three modalities, however, this is also informative since

we find changes that are related across the three modalities.

An interesting point to note is that mCCA allows for associa-

tions in local voxels as well as remotely located voxels, thus

enabling discoveries of structural changes causing compen-

satory functional activation in distant, but connected, regions.

4. CONCLUSION

In this paper, we have proposed a novel method for the fusion
of more than two datasets. We have studied the fMRI, sMRI,
and EEG data to find associations between brain structure and
function that are linked to the AOD task and show changes in
subjects with schizophrenia. Our results show that mCCA is
a promising technique for the fusion of multiple modalities.
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