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ABSTRACT

The novel field of fluid lens cameras introduces unique image pro-
cessing challenges. Intended for surgical applications, these fluid op-
tics systems have improved miniaturization over glass lenses and do
not have moving parts while zooming. However, the liquid medium
creates non-uniform color blur, which causes certain color planes
to appear sharper than others. We propose an adapted perfect re-
construction filter bank that uses high frequency sub-bands of sharp
color planes to improve blurred color planes. The approach is refined
by adjusting the decomposition level based on limited channel infor-
mation. This paper primarily considers the use of a sharp green color
plane to improve a blurred blue color plane. More generally, these
methods could improve the red color plane as well as any system
with high edge correlation between two images.

Index Terms— Biomedical image processing, image enhance-
ment, image reconstruction, image color analysis.

1. INTRODUCTION

Lo invented a fluid lens camera system that, over glass lens systems,
has a smaller size and does not have moving parts while zooming [1,
2]. Modifying a reconstruction filter bank, we attempt to deal with
the new image processing challenges of this system. Primarily, the
fluid lens system affects different color wavelengths non-uniformly
(Fig. 1). The design places the CMOS sensor to focus the green
color, leaving the red color and blue color out of focus.

Previous research on image deblurring can be classified into lin-
ear and non-linear methods. Reviews of these methods can be found
in [3, 4]. Some approaches apply glass lens ideas [5, 6] such as Lucy-
Richardson deconvolution [7, 8] and Weiner deconvolution [9].

This paper adapts a method used in image demosaicking [10]
by modifying a reconstruction filter bank. The algorithm enhances
the sharpness of the blue image by fusing edge information from
the green image. By adding additional levels of decomposition, this
algorithm performs approximately 5 dB better than traditional meth-
ods. The proposed method requires only limited channel knowledge
in order to optimize the filter bank design.

2. NOTATION

The following is a short list of notations:

This work is supported by a grant from UCSD VonLieBig Foundation
and the UCSD Chancellor’s Fellowship in San Diego, California

978-1-4244-2354-5/09/$25.00 ©2009 IEEE 381

(a) Green Image from the Device

(b) Blue Image from the Device

Fig. 1. The device blurs different color planes differently.

B " represents an estimate of B after lens blurring

; Sub-band output after filtering and down-sampling B
twice, an L represents a low-pass filter and an H repre-
sents a high-pass filter at each level

B, Subscript r represents the reconstruction of B

B Subscript L represents the low frequency sub-band out-
put of B‘T

G Subscript H represents the high frequency sub-band
output of G’T

Eq The error for an estimate of G

3. WAVELET SUB-BAND MESHING ALGORITHM

For most natural color images, the Red, Green, and Blue (RGB)
color planes exhibit high edge correlation [10, 11]. In contrast, the
shading changes between color planes. For the fluid lens system,
different color planes experience different amounts of blur. This pa-
per modifies a perfect reconstruction filter bank to improve the blue
image resolution by substituting green image edge information.

A standard perfect reconstruction filter bank decomposes a sig-
nal into separate sub-bands [12], then reconstructs the original sig-
nal. The proposed system (Fig. 2) replaces the edge sub-bands of the
blue image with the edge sub-bands of the green image. The blurring
causes the B/EL, B/L\H , and B/H\H sub-bands. The B/L\L » sub-band
maintains the blue shading while the GLH, GH L, and GH H sub-
bands estimate the edges. Depending on the level of blur, this algo-
rithm uses more green information by increasing the decomposition
level of the BLL and GLL sub-bands.

The algorithm uses a weak blue image and a strong green image:

1. Select a perfect reconstruction filter bank.
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Fig. 4. One Dimensional Modified Reconstruction Filter Bank.

2. Decompose the images into four sub-bands by first filter-
ing and down-sampling the rows, then filtering and down-
sampling the columns.

3. Replace the band pass sub-bands of the blue image (BLH
BH, L, BH H ) with the band pass sub-bands of the green im-
age (GLH, GHL, GHH).

4. Depending on the blur, increase the level of decomposition

to further down-sample and filter the BLL component, re-
placing more sub-bands with the corresponding green color
sub-bands.

5. Reconstruct by up-sampling and filtering.

3.1. Analysis of the Algorithm

For clarity purposes, the analysis shows the one dimensional case,
but these ideas naturally extend to the two dimensional case. Also,
assume that all filters have unit gain.

In Fig. 3, Lo(z) models the blurring effects of the lens on the
true blue image B(z) as a low-pass filter.

Bri(z) = %FO(Z)(Ho(Z)B(Z) + Ho(—2)B(~=2)) M

. 1 . .

Bru(2) = 5 F1(2)(H1(2)B(2) + Hi(~2)B(=2)) @
Modifying this filter bank, we replace Brn (z) with GTH(z)

from the green image sub-band of Fig. 4:

Gru(2) = %FI(Z)(HI(Z)G(Z) + Hi(=2)G(~2)) (©)
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In order to reconstruct the original signal B, the estimate for the
higher sub-band used in reconstruction must be close to the higher
sub-band of the original B signal. From the optical properties of the
lens, (3 better estimates the edges of the original blue signal:

Hy(2)G(2) + Hi(—2)G(—2) + Ec

= Hi(2)B(z) + Hi(—2)B(—%) “)

Hi(2)B(z) + Hi(—2)B(-2) + Ep

= H1(2)B(z) + Hi(—2)B(—2) (5
|Ec| < |Es] (6)

Equations (4) and (5) represent estimates of the true high-pass
sub-bands of B. E¢ and E'p are the errors of the two estimates. Be-
cause of edge correlation between color planes, this model assumes
that the inequality (6) holds.

It can be shown that this idea leads to the following reconstruc-
tion conditions:

Fo(2)Ho(2)Lo(2) + Fi(2)Hi(z) = 227! (7)
Fo(z)Ho(—2)Lo(—2) + Fi(2)H1(—2) = 0 ®)
|Fi(2)Ec| = € )

Ho(z) and Lo(z) are both low-pass filters. If Ho(z) has a cutoff
frequency which is lower than that of Lo (z), then the following two
approximations hold.

Ho(z)Lo(Z)
Ho(—Z)Lo(—Z)

Under these approximations, equations (7) and (8) match the
perfect reconstruction conditions of a conventional two-channel fil-
ter bank [12]. The system output can be simplified:

Hy(z) (10)
Hy(—z2) (11)

Q

Q

A(z) = z*lB(z)—%Fl(z)EG (12)

4. ANALYSIS OF ERROR

As stated in section 3, the derivation requires Ho(z) to have a lower
cutoff frequency than Lg(z) so that approximations (10) and (11)
hold. For a two-channel perfect reconstruction filter bank, Ho has a
transition band centered at w = 0.57 [12]. The system determines
Lo(z) transition frequency which may be less than 0.57. The algo-
rithm avoids this conflict by altering the decomposition level.

The analysis shows the trade-off between the error created by
using the green sub-bands versus the error created by the lens on the



blue sub-bands. We show that for a large class of low-pass blurring
characteristics, an optimal solution for the decomposition level, c,
exists. For this class, ¢ must be increased until the cutoff frequency
of the blur falls beyond the cutoff frequency of the lowest sub-band.

Recall that Lo(e?*) is the blur distortion for the blue image.
Assume that it has the frequency response below:

1 if lw| < 7/4
—3dB i |w| = /4 (13)
0 ifr/d<|w|<m

Lo(e’) ~

A two level decomposition is needed for this Lo(e/“). Because
the cutoff frequency of Lo(e’*)isat /4, BLH, BHL, and BHH
sub-bands poorly estimate the sub-bands of B. However, the unfil-

tered sub-bands of GLH s G/EL, and G H H better estimate the sub-
bands of B. .

It can be shown that the error Egr 1, between BLL and BLL
simplifies to four terms:

P(z) =
Eprr(z) =
= LHo PG

Ho(2)B(2)(1 = Lo(2)) (14)

BLL(z) — BLL(z) (15)

+71Ho(z ) P(~21/%)

3 Ho(=212)P(jz/4)]

+[Ho(=2/%)P(

o 1/4
1 Jz )] (16)

Lo(e?*/*) ~ 1 when |w| < 7, thus the first term =~ 0.
Hy(—e’*/*) ~ 0 by construction, because Ho is a low-pass
filter, thus the second term ~ 0. For the remaining two terms,
Ho(fej“ﬁ) ~ 0, because Hy is a low-pass filter, thus the those
terms ~ 0.

This derivation assumes that Lo ~ 1 if |w| < 7/4. Consider
making Lo more general:

1 if |w| < W_3dB
—3dB  if |w| = w_34B )
0 ifw zip <|w| <7

Lo(ejw) ~

In order to reduce Eprr, the decomposition level, c, can be
increased until 5z < w-_3qp < 26”_1. A large ¢ means that the
algorithm discards parts of the frequency spectrum which have not
been corrupted by the lens. A small ¢ means that in the low band of
the frequency spectra, 0 # 1 — L(z) increasing Eprr, as well as
the reconstruction error. o

The optical properties of the lens, blur out BLH, BHL, and
BHH and yield a high approximation error. GLH , G/EL, and

GTH H better estimate the edges of the original blue signal.

Ecry = BLH-GLH
Ecnr = BHL—-GHL
Ecun = BHH-GHH (18)

The terms in (18) all have smaller values than their corresponding
blue sub-bands. The expression below shows the output:

A(z) = 27'B(z) - Fo(2)Fo(z*)EBLL
—Fy(2)F1(2°)Ecrr — Fi(2)Fo(2*)Ecnr
—F1(2)F1(2*)Ecun (19)
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(c¢) Lucy-Richardson Deconvolution

(d) Proposed Algorithm

Fig. 5. This test simulates blur using a Gaussian blur kernel. The
proposed algorithm yields sharper results.

As the decomposition level increases, more Eg terms appear.
The decomposition level can be increased until 5z < w-_345 <
2%1 to minimize E'prr, without introducing needless F¢ terms.

5. EXPERIMENTAL RESULTS

5.1. Simulated Results

Fig. 5 shows the blue image of Barbara, the blue color plane
was blurred with a 21x21 Gaussian kernel with a standard devi-
ation (STD) of 10. The proposed algorithm used a four levels
of decomposition from modified code in [13]. Compared to the
Lucy-Richardson deconvolution, this method does better.'

Fig. 6 compares the PSNR results of the proposed algorithm
to conventional methods when the variance of a Gaussian kernel in-
creases for a fixed window size. The proposed method has PSNR
values approximately 5 dB higher than traditional method. Listed as
PR, the proposed algorithm is implemented using different wavelets,
such as the Daubechies wavelets [14].

5.2. Actual Image Taken From the Device

While results in section 5.1 used simulated blur kernels, the images
shown in Fig. 7 use actual images from the device. The blur shown
has been created by the lens and has not been simulated. The im-
ages taken were from a distance of 15 cm from the lens in a well lit
laboratory setting. Additional information about the test conditions
and lens functionality can be found in [1]. For this test, lens parame-
ters were set to maximize the quality of the Green color plane at the

More simulation results including video are available at:

http://videoprocessing.ucsd.edu/~jack865/ICASSP2009/



Gaussian Kernel Variance vs PSNR of Blue Image with Fixed
21x21 Window and Different Deconvolution Methods
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Fig. 6. Simulation to compare different deconvolution methods to
the proposed (noted as PR) method.

(c) Proposed Algorithm

Fig. 7. Actual image taken from the device with blur from the fluidic
lens. This experiment compares the proposed algorithm to the Lucy-
Richardson Algorithm.

expense of the other color planes. In order to tune for other color
planes, the curvature of the fluidic lens would need to be adjusted.
Fig. 7 compares the results of the Lucy-Richardson algorithm
to the proposed algorithm. The Lucy-Richardson method results in
problems with over-sharpening, however the proposed algorithm im-
proves the image. The shading layer from the blue is preserved, and
the green image edges improve the details of the proposed recon-
structed images. The proposed algorithm successfully reduces the
blur caused by the lens, making the resulting blue image sharper.

6. CONCLUSION

The improved design of fluid optical systems offer smaller cam-
eras and fixed parts while zooming. However, they provide images
that exhibit problems blurring. This paper proposes a wavelet sub-
band meshing algorithm that uses edge correlation to improve color
planes. The algorithm achieves gains of approximately 5 dB bet-
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ter than conventional methods and requires limited knowledge about
the blur characteristics of the system. This work has been extended
in [15], which discusses the impact of blur kernel shape and blur
kernel size. It also presents color image results. This technique im-
proves any system with high edge correlation between two images
and could be used in compression and super resolution.
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