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ABSTRACT

A new algorithm is developed here for blind extraction of pe-

riodic signals. It is assumed that the fundamental frequen-

cies of the sources (or alternatively one of the harmonics for

each source) are known a priori. Necessary and sufficient

conditions for blind source extraction of cyclostationary sig-

nals are introduced and the optimization problem is solved

using steepest descent method for complex matrices. Com-

puter simulation results verify the effectiveness and good per-

formance of the algorithm.

Index Terms— Blind source extraction, cyclostationarity,

periodic signal separation.

1. INTRODUCTION

During the last decades much effort has been made by re-

searchers for separating unknown mixed signals and estimat-

ing original source signals. In these problems the mixing

mechanism is often unknown. In general, it is impossible

to solve these problems unless some assumptions are made

about the medium, nature, or number of the sources and mea-

surements.

There are many processes in nature that originate from pe-

riodic phenomena. These processes may cause some random

data that represent periodicity in their statistical properties,

and are called cyclostationary processes. Examples of cyclo-

stationary data can be found in telecommunication, radar and

sonar applications, mechanics, econometrics, biological sci-

ence and meteorology [1].

Higher order statistics are widely used in Blind Source

Separation (BSS) problems and many algorithms have been

developed based on this information up to now. A typical

algorithm performs a pre-whitening operation followed by a

rotation to find the estimations.

In [2] the periodicity of the correlation matrix of cyclo-

stationary signals is used to separate periodic signals. In this

attempt, the covariance matrices have been diagonalized in

different lags. The second-order blind identification (SOBI)

algorithm is another well known method in which the covari-

ance matrices with different lags are jointly diagonalized [3].

Convolutive mixtures of cyclostationary signals have been

considered as well. In [4] the conventional higher-order statis-

tics and second-order cyclostationarity of the signals are used

and it is shown that exploitation of the statistical properties

of this kind of signals can enhance the performance of blind

cyclostationary source separation.

In this paper, it is assumed that the source signals are sec-

ond order cyclostationary. The necessary and sufficient con-

ditions for signals to be blindly separated are introduced and

an algorithm based on steepest descent method for complex

matrices on differential manifolds is developed for diagonal-

izing the cyclic correlation matrix under unitary constraint.

Definitions of the concepts and problem formulation are

presented in the next section. In section 3 the proposed al-

gorithm is explained. Experimental results are mentioned in

section 4 and the concluding remarks are given in the last sec-

tion.

2. PROBLEM FORMULATION

Assume m unit norm mutually statistically independent un-

known sources are mixed instantaneously through an un-

known medium and n sensors (n ≥ m) are used to measure

these signals, as in Fig. 1. This system can be formulated in

vector form as

x(t) = As(t) + n(t) (1)

where s(t) = [s1(t)...sm(t)]T is the m × 1 source vector,

n(t) = [n1(t)...nn(t)]T is an n × 1 stationary noise vector,

x(t) = [x1(t)...xn(t)]T is the n×1 measurement vector, A is

an n×m unknown full column rank mixing matrix and super-

script T represents the transpose of a vector. It is assumed that

the source signals are periodic with distinct fundamental fre-

quencies, thus they are second order cyclostationary in wide

sense [1]. Furthermore, to simplify the problem we assume

that m=n.

To estimate the original sources, the observations are first

pre-whitened to obtain z(t) = Wx(t) = Cs(t), where C =
WA (see Fig. 1). To find an estimation of the source signals

we need to rotate the whitened data by a matrix B, which

will generate ẑ(t) = BHz(t). In [5], fourth order cumulants

are used to find the rotation matrix for non-Gaussian sources.
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Fig. 1. The overall block diagram.

Here we exploit the cyclostationarity properties of the sources

to estimate and extract the original sources.

It is shown in [6] that if s(t) is cyclostationary, then this

process and its frequency-shifted version s(t)ej2πβt are cor-

related for some β, where βs are called cyclic frequencies of

s(t). This property results in the definition of cyclic correla-

tion of the signals. The cyclic cross-correlation function of

the elements xp(t) and xq(t) of the complex vector x(t) at

cycle frequency β and lag τ is defined as

rβ
pq(x, τ) = 〈xp(t)x�

q(t + τ)e−j2πβt〉 (2)

where 〈.〉 denotes time averaging operator, i.e. lim
T→∞

1
2T+1∑T

t=−T xp(t)x�
q(t+ τ)e−j2πβt, (.)� represents complex con-

jugate of a complex variable, and j =
√−1. Accordingly,

cyclic correlation matrix of the n × 1 complex signal vector

x(t) is defined as:

Rβ
x (τ) � 〈x(t)xH(t + τ)ejβt〉 (3)

where superscript H denotes complex conjugate transpose of

a matrix. If s(t) is a vector of n independent signals with dis-

tinct cycle frequencies, cyclic cross-correlation function has

the following properties [7]:

rβp
pq (s, τ) = 〈sp(t)s�

q(t + τ)ejβpt〉 = 0, if p �= q

rβq
pp(s, τ) = 〈sp(t)s�

p(t + τ)ejβqt〉 = 0, if p �= q

rβp
pp (s, 0) = 〈sp(t)s�

p(t)e
jβpt〉 �= 0, ∀p

(4)

where βi is the cycle frequency of the source si(t). This prop-

erty as will be seen in this paper can be used for blindly ex-

tracting almost cyclostationary stochastic processes. The fol-

lowing theorem considers the necessary and sufficient condi-

tions for extracting one cyclostationary source from the set of

observations.

Theorem 1. Assume z(t) is a white mixture of cyclostation-
ary sources with distinct cycle frequencies βi, i ∈ {1, ..., n}.
For any unitary matrix B, define ẑ(t) = BHz(t). Then bi (col-
umn i of B) is an extracting vector of pth source if and only if
|rβp

ii (ẑ, 0)| = 1 and r
βp

ij (ẑ, 0) = 0 for all j ∈ {1, ..., i − 1, i +
1, ..., n}

This theorem can be proved easily by expanding r
βp

ij (ẑ, 0)

with respect to the elements of Rβp
s (0) and the elements of

the matrix D = BHC.

Therefore, if a matrix B can be found such that the con-

ditions of theorem 1 are satisfied, the mixed sources can be

extracted one by one. We now return to the problem of ex-

tracting periodic sources. To simplify the calculations, it is

assumed that the sources are real, and it is easy to extend the

results to complex case. Fourier series expansion of the peri-

odic sources exist and for vth source it can be written as:

sv(t) = αv0 +
L∑

l=1

αvl cos(2πlfvt + φl) (5)

where fv is the fundamental frequency of the source v, and L
is the number of coefficients in the Fourier series expansion.

Since it is assumed that the source signals are zero mean, then

αv0 = 0. To calculate rβ
pq(ẑ, 0) we first evaluate ẑp(t)ẑq(t)

for all p and q as

ẑp(t)ẑq(t) =
n∑

h=1

dphsh(t)
n∑

g=1

dqgsg(t)

=
n∑

h=1

n∑
g=1

dphdqg

L∑
l=1

E∑
e=1

αhlαge

× cos(2πlfht + φl) cos(2πefgt + φe)

(6)

From basic trigonometry we know that

cos(2πlfht + φl) cos(2πefgt + φe) =
1
2
[ cos(2π(lfh + efg)t + φl + φe)+

cos(2π(lfh − efg)t + φl − φe)]

(7)

Substituting (6) and (7) in (2) and remembering the Fourier

transform properties of cosine function and ignoring the fre-

quency component at β = 0 it can be concluded that:

• For a source signal of the form (5), rβ
vv(s, 0) can have

nonzero values for all βv ∈ Fv , where Fv = {β|β =
kfv;∀k ∈ {1, .., 2L}, β �= 0}. βv is a cyclic frequency

of source v.

• The elements of Rβ
ẑ (0) can have nonzero values at

cyclic frequencies β, where β ∈ {lf1 ± ef1, ..., lf1 ±
efn, ..., lfn ± ef1, ..., lfn ± efn, β �= 0}

In other words, the spectrum of the quadratic function

ẑp(t)ẑq(t) has a nonzero component at some β, where the

value of this component is composed of two parts. The first

one is resulted from a cosine term with frequency f = β/2
and the second one comes from the values of cross compo-

nents which are created by mutually multiplying the harmon-

ics of the source signals while their harmonic frequencies

satisfy:

lfh ± efg = β (8)

For the ith source with cycle frequency βi, provided that the

source signals satisfy

∀h, g �= i lfh ± efg �= βi (9)
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if a matrix B is found such that for βi ∈ Fi

off{Rβi

ẑ (0)} = 0 (10)

it means that the cosine term with the frequency of f = βi/2
exists in just one row of ẑ(t). Operator off{.} computes the

sum of the squared magnitudes of the off-diagonal elements

of a matrix. Since we assume that the sources are unit norm,

this cosine term is the dominant component of that element.

In other words, B can extract a cosine term with frequency βi

in the source of interest. It is shown in [8] that diagonalization

of Rβi

ẑ (0) means that D is a unitary diagonal matrix, thus,

when extracting the cosine term all the harmonics of the ith
source are extracted by B.

This means that to extract the ith sourcre we can relax

the condition of theorem 1 and simply diagonalize the cyclic

correlation matrix of estimation vector.

Although (9) imposes a restriction, it provides some re-

dundancy in selecting the appropriate cycle frequency. In

other words, we don’t need to select the fundamental cycle

frequency (the one corresponding to the fundamental fre-

quency) as the required cycle frequency of the source. As

long as the cycle frequencies satisfy (9), there is no more

restriction in selecting them.

3. ALGORITHM

Our objective is to find a matrix B for which (10) is satis-

fied. Thus the following cost function is defined, which is a

measure of nondiagonality of Rβp

ẑ (0):

J (B) = off{Rβp

ẑ (0)} = off{BHRβp
z (0)B} (11)

In order to find the minimum point of J (B) we use

the steepest descent method for complex matrices [9]. This

method stems from differential geometry and optimizes the

cost function under unitary constraint. It is shown in [9] that

to find the optimum point of a cost function under unitary

constraint on the Riemannian space it is enough to evaluate

the gradient of the cost function at a point B and then trans-

late it to identity. In mathematical terms, if ∇J (B) is the

gradient of the cost function J (B) on Euclidean space, then

the gradient direction on the Riemannian space is:

∇̂(B) = ∇J (B)BH − B∇J (B)H (12)

For our problem, the Euclidean gradient of G(B) is

∇J (B) =
∂J (B)
∂B�

= Rβp
z (0)B

(
BHRβp

z (0)B − diag(BHRβp
z (0)B)

) (13)

where diag(.) denotes diagonal elements of a matrix [10].

The Riemannian steepest descent algorithm [9] is pre-

sented in procedure PSE.

Algorithm 1 Periodic Signal Extraction

Procedure PSE(R) {R = Rβp
ẑ (0)}

k ← 0, Bk ← I
repeat

Compute the Euclidean gradient of the cost function: ∇J (Bk)

Compute the gradient direction on the Riemannian space: ∇̂J (Bk)

compute the rotation matrix Pk = exp(−μ∇̂J (Bk))
Bk+1 ← PkBk, k ← k + 1

until ‖∇J (Bk)‖ ≤ Tr

where μ is the learning rate and the exponential of an

n×n complex matrix is given by the convergent power series

exp(A) =
∑∞

m=0(A
m/m!).

After convergence of the algorithm, the pth source will

appear in one of the rows of ẑ(t), where due to the permu-

tation ambiguity the row number is not known. At this stage

we have to deflate the extracted signal from the mixtures. The

conventional batch deflation methods (see [11]) use the stan-

dard second order statistics as a measure of uncorrelatedness.

Therefore there in no guarantee that the cyclic components of

the extracted signal are well deflated. We define the following

cost function:

J̃p(b̃p) =〈zH
p+1(t)zp+1(t)ejβpt〉

=〈zH
p (t)zp(t)ejβpt〉 − 2b̃

H

p 〈zH
p (t)ẑp(t)ejβpt〉

+ b̃
H

p b̃p〈ẑ2
p(t)ejβpt〉

(14)

where z1(t) = z(t), ẑp(t) is the pth extracted source,

zp+1(t) = zp(t) − b̃pẑp(t) and b̃p is the n × 1 deflating

column vector. By differentiating J̃p(b̃p) with respect to b̃p

and solving the result to find the minimum point, we will

have the following deflating equation:

b̃p =
〈zp(t)zH

p (t)ejβpt〉bp

〈ẑ2
p(t)ejβpt〉 (15)

where bp is a column in B corresponding to source p.

4. EXPERIMENTS

Computer simulations were carried out to illustrate the perfor-

mance of the proposed algorithm and the results were com-

pared with those of SOBI, [3]. The objective of the proposed

algorithm is to estimate the source signals such that they are

uncorrelated and there is minimum cyclic correlation between

them. So, the following performance index is used to measure

the cyclic correlation between the estimated sources:

PI =
m∑

i=1

off{Rβi

ẑ (0)} (16)

The proposed algorithm was applied to 2000 samples of three

periodic signals (Fig. 2). Different levels of noise were added
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Fig. 2. Source signals

and the performance index was averaged over 100 indepen-

dent trials for each level of noise. The signal-to-noise ratio is

defined as SNR = −10 log10 σ2 , where σ2 is the noise vari-

ance.

The values of the performance indices for SOBI and PSE

are presented in Fig. 3. As it can be seen, SOBI performs

better just for high values of noise, while for normal noise

levels, PSE provides a better performance.

5. CONCLUDING REMARKS

In this paper an algorithm for cyclostationary blind source ex-

traction is introduced. The algorithm is based on diagonaliza-

tion of the cyclic correlation matrix at a specific cycle fre-

quency. Although the relationship between the cycle frequen-

cies (and their harmonics) must comply with some conditions

but practically such conditions are often satisfied. In places

where the harmonics of the cycle frequencies exist, the condi-

tions in (9) allows to select a different cycle frequency. Com-

puter simulations show the performance of the algorithm.
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