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ABSTRACT
In this paper, a method for extracting and classifying movement-

related brain signals is proposed. A single-trial MEG obser-

vation is first processed with a pre-whitening filter so that

strong stationary interference is eliminated. Next, a brain sig-

nal effective for classification is extracted using an adaptive

spatial filter. The extracted signal is then classified with a

support vector machine. From the experimental results, it is

shown that the classification rate of 62.6 % is obtained for the

brain signals related to the three types of hand movements

(“scissors-paper-rock”).

Index Terms— MEG, GEVD, adaptive spatial filter,

SVM

1. INTRODUCTION

Much research has been done on the extraction and classi-

fication of a brain signal of interest from a single trial data

obtained using noninvasive sensors such as those of mag-

netoencephalogram (MEG) or electroencephalogram (EEG)

[1]. One of the problems in extracting these target signals

from a single trial observation is that the target signal is usu-

ally buried in various spontaneous activities such as alpha

rhythm, and the signal-to-noise ratio (SNR) is extremely low.

To overcome this problem, the authors have previously pro-

posed a method of pre-whitening of the sensor observation

using generalized eigenvalue decomposition (GEVD) [2]. In

this method, the spatial statistics (covariance between the

sensors) of the interference signal are obtained in the period

in which the target signal is not active. By using this inter-

ference covariance, the interference signals are effectively

removed from the observation.

In this paper, an adaptive spatial filter (ASF) approach

is proposed to extract brain signals effective for classifica-

tion from the observation data purified by the GEVD pre-

whitening filter. Next, features are extracted from the ASF

output and are fed to the support vector machine (SVM) clas-

sifier. The results of the classification are reported and dis-

cussed.
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Fig. 1. Overview of the proposed method.

2. OVERVIEW OF THE METHOD

The aim of this study is to develop a method for classifying

single-trial MEG observation related to hand movement (the

game of “scissors-paper-rock”).

Fig.1 shows a block diagram of the entire method. In the

training process, MEG observations belonging to the training

data set are processed with a pre-whitening filter using GEVD

to eliminate stationary interference first. Next, the ASF is

trained using the pre-whitened training data so that it can ex-

tract the signals containing key information for classification.

In the feature extraction step, the filtered signal is transformed

into the frequency domain by the Fourier transform (FT) to

extract the features. Principal component analysis (PCA) is

then performed for dimension reduction and normalization.

In the classification step, a kernel-SVM classifier is trained so

that the obtained features can be classified according to the

corresponding hand movements.

In the classification process, a single trial MEG observa-

tion of unknown class (movement) is processed with the same

steps as in the training process with the fixed coefficients ob-

tained in the training process.
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3. FILTERING

3.1. Pre-whitening using GEVD

The purpose of pre-whitening is to eliminate stationary in-

terferences such as alpha rhythm from the observations. In

this section, the GEVD pre-whitening filter that was origi-

nally proposed in the field of acoustics [3] and was introduced

to brain signal processing [2] is summarized to facilitate un-

derstanding of the following sections.

Let us denote the MEG sensor observation as

x(t) = [x1(t), · · · , xM (t)]T (1)

where xm(t) denotes the observation at the mth sensor. The

symbol M denotes the number of MEG sensors. Noise co-

variance and signal+noise covariance used for GEVD is then

defined respectively as

K = E
[
x(t)xT (t)

]
, for t ∈ ΨI (2)

R = E
[
x(t)xT (t)

]
, for t ∈ ΨI+S (3)

where ΨI denotes the period of time in which only stationary

interference exists while ΨI+S denotes the period in which

both a target brain signal and interference exist. It is assumed

that the stationary interference in ΨI and that in ΨI+S have

the same spatial characteristics.

GEVD of K and R is defined as

Rem = λmKem (4)

where λm and em denote the eigenvalue and eigenvector,

respectively. Using the eigenvectors of GEVD, the pre-

whitening filter W is obtained as

y(t) = Wx(t)
W = E−T GET (5)

where E = [e1, · · · , eM ] and the gain matrix G is defined as

G = diag[g1, · · · , gM] (6)

g = [g1, · · · , gM ] = [

L︷ ︸︸ ︷
1, · · · , 1, 0, · · · , 0] (7)

The symbol L denotes the dimension of the signal subspace.

By using this pre-whitening filter W, interference common

in ΨI and ΨI+S is eliminated from the observation x(t).

3.2. Spatial Filtering using ASF

The purpose of ASF is to extract a brain signal effective for

classification from the pre-whitened observation. Figure 2

shows a block diagram of ASF.

In the training step, pre-whitened observation y(t) is clas-

sified according to the class label {C1, C2, C3} (C1:rock,

C2:scissors. C3:paper). The classified observation is then
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Fig. 2. Training and classification process of ASF.

averaged to obtain a “standard” waveform pattern common to

its class, i.e.,

ȳi(t) =
1
Ni

∑
n

yi
n(t). (8)

where yi
n(t) denotes the nth sample waveform belonging to

the ith class, and Ni denotes the total number of trials in the

ith class in the training data. Next, the averaged waveform at

one of the sensors is selected and is used as a desired signal

for the adaptive filter training:

di(t) = ȳi
D(t) (9)

where ȳi
D(t) is the selected Dth component of ȳi(t). In a

preliminary experiment, the averaged sensor observation was

found to show a pattern peculiar to each class and can be clas-

sified when an appropriate sensor which is close to the brain

area active during the movement is selected. The selected Dth

sensor is termed the target sensor hereafter. The selection of

the target sensor is discussed in Section 5. Figure 3 shows an

example of the desired signal di(t).
The coefficient vector for the adaptive filter is given by

hi =
(
Ri

)−1
pi (10)

Ri =
∑

n

∑
t

yi
n(t)

(
yi

n(t)
)T

(11)

pi =
∑

n

∑
t

yi
n(t)di(t) (12)

In the filtering step, an unknown pre-whitened observa-

tion y(t) is filtered by each coefficient vector as

zi(t) =
(
hi

)T
y(t) (13)

Since the waveform common to the ith class ȳi
D(t) is the de-

sired signal di(t), the adaptive filter is expected to yield wave-

form similar to ȳi
D(t) when y(t) ∈ Ci.
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Fig. 3. Example of desired signal di(t). The period [1,1500]

and [1501,2000] correspond to ΨI and ΨI+S , respectively.

4. CLASSIFICATION

4.1. Feature Extraction

In this section, features for the classification are extracted

from the filtered output zi(t). First, zi(t) is Fourier trans-

formed as

Zi(k) = F [zi(t)] (14)

where Zi(k) denotes a complex Fourier coefficient. Then,

lower order coefficients are extracted from {Zi(k)}, and the

extracted features for each class are stacked as follows:

z =
[
Z1(1), · · · , Z1(K), · · · , Z3(1), · · · , Z3(K)

]T
(15)

The reason for extracting lower order Fourier coefficients up

to K is that they represent the envelope of the time waveform

which is considered to be effective for classification.

For efficient classification, the dimensions of the feature

vector z are reduced and normalized by principal component

analysis (PCA). In the training process, the following covari-

ance matrix is calculated.

Φ =
∑

n

znzT
n (16)

where zn denotes the feature vector for the nth trial in the

training data set. Let us denote the largest J eigenvalues and

the corresponding eigenvectors of Φ, respectively, as

Γ = diag(γ1, · · · , γJ) (17)

Q = [q1, · · · ,qJ ] (18)

Table 1. Parameters for extracting features.

Parameter Value

Max order of FT coeffs. K 20

PCA order J 5

Signal subspace dimension L 60

Table 2. Classification rate for each session.

Closed Open

Session 1 2 3 4 5

Score [%] 78.9 86.6 67.8 60.0 60.0

In the classification process, arbitrary feature vector z is pro-

cessed by the following PCA filter V:

u = VT z (19)

V = QΓ−1/2 (20)

Without the dimension reduction, the SVM classifier de-

scribed in the next section tends to be overtrained, resulting

in a poor classification rate for an open test. The parameters

used for the feature extraction are summarized in Table 1.

4.2. Classification using SVM

The feature vector developed in the previous section is clas-

sified using SVM. A binary classifier, in which C1 and

{C2, C3} are classified first, and then C2 and C3 are clas-

sified was employed. As a kernel function of SVM, a radial

basis function (RBF) with a Gaussian kernel was employed

[4].

5. EXPERIMENT

5.1. Condition

The observation data were obtained using 208-channel MEG

sensors. Brain activities during the movements of a hand of a

single subject (the game of “scissors-paper-rock” ) were mea-

sured. A single session consists of 90 trials (movements).

Movements of ’paper’, ’rock’ and ’scissors’ were equally in-

cluded in a session. There were five sessions, the first two

sessions being used for training ASF, PCA and SVM, and the

remaining three sessions being used as test data for the clas-

sification.

5.2. Results

Table 2 shows the classification rate for both closed and open

tests when sensor #154 was used as the target sensor. A clas-

sification rate of 62.6 % was obtained for the open test.
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Fig. 4. Location of the target sensors which exhibited high

classification rates.
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Fig. 5. Classification rate as a function of the distance be-

tween the target sensor and the standard sensor (#154).

The location of the target sensor in the case of the top five

scores is depicted in Fig.4. From this, it can be seen that the

target sensors located close to the rear upper part of the brain

showed higher scores.

Figure 5 shows the classification rate when the target sen-

sor was varied. The lateral axis of this figure is the distance

between the tested target sensor and the standard sensor (sen-

sor #154, which showed the highest rate). From this, it can be

seen that the selection of the target sensor is sensitive to the

classification.

5.3. Discussion

Figure 6 shows a schematic diagram of the signal sources

and the sensors. When signal sources are distributed as de-

Sensor

(a) Distributed
source

(b)Point source

Source

Fig. 6. Schematic diagram of distributed source and point

source. For the sake of simplicity, the source signal is de-

picted as it reaches the sensor directly. In an actual physi-

cal phenomenon, however, the signal travels according to the

Biot-Savart low.

picted in Fig.6(a), a waveform pattern consisting of signals

coming from various part of distributed sources appears at

the sensors. This mixture of signals is similar to interference

fringes of lights and reflects spatial information of the dis-

tributed sources. Due to this spatial information included in

the waveform extracted by the proposed method, it is consid-

ered that the classification shows relatively good results. In

the preliminary experiment in which a brain signal from a sin-

gle dipole source was extracted by the adaptive beamformer

[2] (the case of Fig.6(b)), on the other hand, the classification

failed. In this case, no spatial information is included in the

extracted waveform. From these, spatial information of the

distributed sources is considered to contribute to the classifi-

cation of movement-related brain signals.

6. CONCLUSION

In this paper, a method of extracting and classifying a

movement-related brain signal from a single trial MEG obser-

vation is proposed. Observation was pre-whitened by GEVD

and the information effective for classification was extracted

using a spatial adaptive filter. From the results of classifi-

cation, it was shown that a classification rate of 62.6 % was

obtained.
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