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ABSTRACT

Rhythmic component extraction (RCE) is a method for extracting a
signal oscillating at a certain frequency from multi-channel sensor
signals. This method can be effectively used for detecting rhythmic
signals such as alpha and beta waves, which are the feature signals in
brain computer/machine interfaces (BCI/BMI). We are addressing a
problem in developing an on-line adaptive algorithm for RCE. Since
a rhythmic signal in the brain slowly varies, the signals extracted in
adjacent frames should not largely different. We propose introduc-
ing a regularization term that evaluates the correlation between the
signal extracted in the last step and the one to be extracted to achieve
this. We show that the maximization of the cost function with the
proposed regularization term is reduced to a generalized eigenvalue
problem and experimental results from practical EEG data support
this analysis.

Index Terms— Electroencephalogram (EEG), signal extraction,
brain computer interface, multi-channel signal processing

1. INTRODUCTION

It is crucial to extract the brain activity of humans from measured
brain signals in a brain-computer/machine interface (BCI/BMI) and
clinical diagnosis. To observe brain activity, non-invasive measure-
ment devices, such as electroencephalogram (EEG), magnetroen-
cephalography (MEG), and functional magnetic response imaging
(fMRI), are widely used. Among these, because of its simplicity and
low cost, EEG is the most practical measurement device for engi-
neering applications. In general, signals measured by EEG have high
resolution times, but low spatial resolution. In addition, the amplifier
gain is very large and then the obtained signal is highly affected by
measurement noise. Therefore, signal processing techniques need
to be developed to effectively extract the desired features from the
measurements [1]．

In BCI, which is a challenging signal processing and neuro-
science application, rhythmically oscillating components, such as
mu rhythm and beta wave, and/or event related potential, such as
P300, are widely used as feature values. To extract these features,
methods based on frequency analysis, such as linear filtering and
Fourier analysis, and/or ones based on statistical signal processing,
such as independent component analysis (ICA) [2, 3], have been
used [1]. Moreover, the so-called common spatial pattern (CSP) [4],
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which is a method based on learning, is also known as a method for
extracting features in BCI applications.

Frequency filtering is a classical and simple single channel pro-
cessing method for extracting a specific frequency component of in-
terest. However, when we measure data in a noisy environment1, it
is difficult to differentiate a component generated by brain activity
from noise-related components. In addition, a filter spanning a nar-
row frequency range like a notch filter, can extract an alpha wave-like
signal from random noise. ICA is a multi-channel signal processing
method that exploits the statistical nature of signals. ICA is theoreti-
cally well-established and there have been several reports where ICA
can be used to extract rhythmic signals like alpha waves [2, 3]. How-
ever, in practical settings, a component of interest cannot always be
obtained by using ICA, because there is no guarantee that the desired
component meets the assumption of ICA, that is, the original sources
are statistically independent and the number of originals is equal to
the number of observations. Also, the CSP needs to learn the data,
which is strongly dependent on a subject, a task, and the conditions
of the experiment.

Rhythmic component extraction (RCE) [5] was developed to ex-
tract a rhythmically oscillating signal, Like other methods for multi-
channel signal processing, RCE extracts the target signal by using a
linear combination of the observed signals with weight coefficients.
This method uses physically well-established information, that is,
frequency. However, unlike frequency filtering, this method does not
discard or filter out frequency components, but actually “enhances”
frequency components of interest by using a simple linear combina-
tion of the channel signals. This way, the RCE successfully extracts
a signal that has energy mostly in the frequency of interest. More-
over, RCE is independent of the subjects or methods of learning.

However, Tanaka and Saito [5] have developed the only batch-
type algorithm for RCE. To analyze EEG signals or to develop BCI
systems, we need to adapt the weight coefficients. This adaptation
should be made so that there is no discontinuity in the weight co-
efficients or the extracted signal over time. For instance, when we
attempt to extract a component with frequency of 10 Hz, if the es-
timated weight coefficients change a lot in sequence, the frequency
of the extracted signal is no longer the desired 10 Hz. Therefore, the
objective of this paper is to develop an adaptive RCE algorithm that
avoids the discontinuity effect. Therefore, we propose to regular-
ize the cost function of the weight coefficients originally proposed
for RCE in [5] with the correlation between rhythmic components
extracted in the previous and current updates. Then this regular-
ized cost function is maximized by solving a generalized eigenvalue

1Even slight moves of a human head lead to significant noise.

353978-1-4244-2354-5/09/$25.00 ©2009 IEEE ICASSP 2009



problem. In the experiments, the proposed adaptive algorithm is suc-
cessfully applied to extract a rhythmic signal from practical EEG
data measured in an unshielded environment.

2. RHYTHMIC COMPONENT EXTRACTION (RCE)
METHOD

Rhythmic component extraction (RCE) is a method for extracting a
component that concentrates its energy within a certain frequency
range by using a weighted sum of the channel signals. This section
reviews the theory of RCE proposed in [5]. Let xi[k] (k = 0, . . . ,N −
1) be an observed signal in the ith channel, where i = 1, . . . ,M. We
extract a signal by using a linear combination of the channel signals
as follows:

x̂[k] =
M∑
i=1

wixi[k], (1)

where wi, i = 1, . . . ,M, is a weight coefficient to be determined by
a certain criterion. The RCE determines the weight coefficients in
such a way that the energy in specific frequency components of x̂[k]
is as large as possible while the energy in the other frequency x̂[k] is
as small as possible. This idea is formulated in the following way.

Let X̂(e− jω) be the discrete-time Fourier transform (DTFT) of
x̂[k], that is, X̂(e− jω) =

∑N−1
k=0 x̂[k]e− jωk, and let Ω1 ⊂ [0, π] and

Ω2 ⊂ [0, π] be the frequency ranges of interest and those to be sup-
pressed, respectively. It is sufficient to use positive frequencies be-
cause the EEG signal is real-valued. Then, the RCE cost function to
be maximized is given as follows [5]:

J1[w1, . . . ,wM] =

∫
Ω1

|X̂(e− jω)|2dω
∫
Ω2

|X̂(e− jω)|2dω
. (2)

The maximization of the above cost function is reduced to a gener-
alized eigenvalue problem in the following way. DefineX ∈ �M×N

as [X ]ik = xi[k], and matricesW1 andW2 as

[W1]l,m = �
∫
Ω1

e− jω(l−m)dω, (3)

[W2]l,m = �
∫
Ω2

e− jω(l−m)dω, (4)

respectively, where l,m = 0, . . . ,N − 1 and �· takes the real-part
of the complex value. Then, J1[w] in (2) can be described in the
matrix-vector form as

J1[w] =
wTXW1X

Tw

wTXW2XTw
, (5)

where w = [w1, · · · ,wM]T (·T describes the transpose). The max-
imizer of J1[w] is given by the eigenvector corresponding to the
maximum eigenvalue of the following generalized eigenvalue prob-
lem:

XW1X
Tw = λXW2X

Tw. (6)
The problem can be solved by using a matrix square root of
XW2X

T . Since XW2X
T is symmetric, a matrix square root,

S, exists such that XW2X
T = SST . Note that S is not uniquely

determined. Then, the optimal solution, w∗, is given by

w∗ = S−T ŵ, (7)

where ŵ is the eigenvector corresponding to the largest eigenvalue
of S−1XW1X

TS−T , where ·−T = (·−1)T .

3. ADAPTATION AND REGULARIZATION OF RCE

We discuss how to adapt RCE, and illustrate that a discontinuity
problem arises by introducing the adaptation. Then, it is suggested
that a solution to this problem is to consider the correlation between
the extracted signals in successive two frames.

3.1. Adaptation

Adaptation of RCE can be made by using frame processing. Let
xi[n] be the observed signal in the ith channel with time index n. In
this case, the time index can be either finite or infinite. In a way
similar to (1), a rhythmic component is extracted as follows:

x̂[n] =
M∑
i=1

w(n)i xi[n], (8)

where w(n)i is the weight for the nth sample. The weight, w(n)i , is ob-
tained by replacing sample matrixX in (5) with matrixX (n) defined
by [

X (n)
]
ik
= a[k]xi[n + k − d], (9)

where a[k], k = 0, . . . ,N−1, is an appropriate window function with
a length of N and d is a time delay. For instance, when d = (N−1)/2
where N is odd, the time index n corresponds to the center of the
frame. In summary, we obtain the weight at time index n as

w(n) = argmax
w

J1[w]
∣∣∣∣∣∣
X=X (n)

. (10)

Moreover, J1[w(n)] represents a variation of the energy of the rhyth-
mic component in the frequency of interest, Ω1. This implies that
J1[w(n)] can lead to a time-frequency analysis.

3.2. Regularization for Adaptive RCE

In the adaptive RCE introduced above, the weights obtained in the
previous and current frames are independently derived. Therefore,
it is highly possible that the rhythmic components extracted in the
n − 1th frame and in the nth frame significantly differ from each
other. However, the waveform and/or phase of a rhythmic brain sig-
nal that is generated from the synchronization of electrical activity
of neurons cannot suddenly change2. Therefore, in this subsection,
we propose a regularization method that takes into consideration the
correlation between the signals extracted in the previous frame and
to be extracted in the current frame.

Let w(n−1) and w(n) be the weight coefficients in the n − 1th and
the nth frames, respectively. Notice that w(n−1) has already been
obtained andw(n) is an unknown vector to be determined. Then, the
correlation of rhythmic components extracted in the previous and
current frames is described as

r(n) = w(n)TX (n)P1P0
TX (n−1)Tw(n−1), (11)

where P1 and P0 are the matrices of size l× (l− 1) that take the part
overlapping between X (n) and X (n−1). In the case of a one-sample
shift of frames, with zero matrix 01×(l−1), they are described as

P0 =

[
Il−1

01×(l−1)

]
,P1 =

[
01×(l−1)
Il−1

]
. (12)

2When sampling EEG signal with rate 1kHz, the time interval between
time indexes n − 1 and n is 1/1000 seconds.
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Fig. 1. Location of electrodes

Under the assumption that a rhythmic signal from a brain varies
slowly with time, we should estimate the w in such a way that |r(n)|
remains large while adapting. Therefore, we propose to regularize
the cost function with |r(n)|2, and find the w that maximizes the new
cost function given as

J2[w] =
wTX (n)W1X

(n)Tw + ε |r(n)|2
wTX (n)W2X (n)Tw

, (13)

that is, w(n) is given by

w(n) = argmax
w

J2[w], (14)

where ε is a regularization coefficient. When ε = 0, J2[w] coincides
with J1[w].

It can be shown that the maximization of J2[w] can also be re-
duced to a generalized eigenvalue problem. By defining rank-1 ma-
trix

C (n−1) = P1P0
TX (n−1)Tw(n−1)w(n−1)TX (n−1)P0P1

T , (15)

|r(n)|2 can be rewritten as
|r(n)|2 = w(n)TX (n)C (n−1)X (n)Tw. (16)

Therefore, we obtain

J2[w] =
wTX (n)(W1 + εC

(n−1))X (n)Tw

wTX (n)W2X (n)Tw
. (17)

In the way similar to that for J1[w], the maximizer of this cost func-
tion,w(n), is given as

w(n) = S (n)−T ŵ(n), (18)

where X (n)W2X
(n)T = S (n)S (n)T , and ŵ(n) is the eigenvector

corresponding to the largest eigenvalue of S (n)−1X (n+1)(W1 +

εC (n−1))X (n+1)TS (n)−T .

4. EXPERIMENTAL RESULTS

Our experiments proved that the proposed adaptive RCE with regu-
larization works well in extracting a rhythmic signal. We measured
a set of EEG signals by using a multi-channel bio-amplifier, (MEG-
6116) by NIHONKOHDEN, with an A/D converter (AIO-163202F-
PE) by Contec, in a normal unshielded room. The following are the
experimental settings and measured data information:

Fig. 2. Raw observed EEG signals. 7150 ≤ n ≤ 7650. From top to
bottom, left: Cz, Pz, C4, T8, C3, T7; right: O2, O1, Fp2, Fp1, P4,
P3.

7200 7400 7600
Time Index n

(a) ICA

7200 7400 7600
Time Index n

(b) Proposed method

Fig. 3. Extracted signals using Fast ICA and adaptive RCE from
channel signals shown in Fig. 2.

• Sampling frequency: Fs = 500 Hz
• Number of channels: M = 12 (Cz, Pz, C4, T8, C3, T7, O2,
O1, Fp2, Fp1, P4, P3)

• Electrode location: See Fig. 1.
• Task of subject: Eye opened (0 to 10 sec.), eye closed (10 to
20 sec.), and eye opened (20 to 30 sec.).

A part of the observed signals for all the channels are illustrated in
Fig. 2. It shows that the task of closing one’s eyes yields a visible
alpha wave that appears for some channels, but many of them are
strongly contaminated by noise. Moreover, the amplitude range of
the signals varies.

For simplicity, we extracted the alpha wave-type signals, and
then set Ω1 to [7, 13](2π/Fs) and Ω2 to [0, π] − Ω1. In addition, the
frame size, N, was set to 512, and the frame window was shifted by
one sample.

4.1. Adaptive RCE vs Fast ICA

The first example shows the comparison of the proposed adaptive
RCE with the well-known Fast ICA [2]. Remember that the adaptive
RCE algorithm is given by (8) and (18). For comparison, the Fast
ICA is also applied in an adaptive manner. In other words, the weight
coefficients obtained in the nth frame are used for extracting the nth
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Fig. 5. Variation of w(n)i , 7050 ≤ n ≤ 7100.

Fig. 4. Results from usingw(n−1) andw(n) for two successive frames
(the n − 1th and nth frames). Left: Without regularization (ε = 0).
Right: With regularization (ε = 1000).

sample of the independent component in the same way as in (8). For
the RCE, the regularization coefficient was fixed to ε = 1000 in this
comparison.

Figure 3 shows the signals for a time index from 7150 to 7650
extracted by using both adaptive RCE and Fast ICA. It is clear from
the figure that the ICA fails to extract the dominant signal that we
can see in the raw data, and it is difficult to give a physical meaning
to the extracted component. However, the proposed RCE algorithm
successfully extracts an alpha-like wave with less noise than the ob-
served data illustrated in Fig. 2.

4.2. Effect of Regularization

The next comparison is to show the effect of regularization. If we ap-
ply the weights for windowed frame signals, when we obtain weight
coefficient vectors in the n−1th and nth frames, the extracted signals
withw(n−1) andw(n) should be very similar, Figure 4 shows how the
regularization stabilizes the extraction of a signal. When there is no
regularization term (ε = 0), the extracted signals in the n − 1th and
nth frames are totally different, as shown in Fig. 4. However, by im-
posing regularization, a small difference between signals extracted
by w(n−1) andw(n) can be seen in Fig. 4.

This effect is clearly observed when we track the values in w(n).
Figure 5 depicts the variation of components in w(n) corresponding
to channels CZ, O1, and Fp1. We found that there is a big “jump”
when ε = 0 (without regularization). However, when the cost func-
tion is regularized, we can see that the values of w(n)i slowly change.

5. CONCLUSION AND FUTUREWORK

We proposed an adaptive RCE algorithm with regularization that
takes into consideration the correlation between the extracted signals
in the previous and current frames. It was proven that the maximiza-
tion of the proposed cost function can be maximized by solving a
generalized eigenvalue problem. Then, a method of adaptation was
introduced. It was clarified by experimentation using practical EEG
data that the proposed adaptive RCE can avoid discontinuity or jump
in the weight coefficients and/or the extracted signal.

Our future work will be to use the proposed technique for prac-
tical BCI/BMI. In particular, extracting the mu rhythm related to the
motor cortex and/or the steady state visual evoked potential (SSVEP)
is of interest. Moreover, a fast algorithm to compute adaptive weight
coefficients is under development.
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