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Abstract — The efficient analysis of electroencephalographic
(EEG) data is a long standing problem in neuroscience, which
has regained new interest due to the possibilities of multidimen-
sional signal processing. We analyze event related multi-channel
EEG recordings on the basis of the time-varying spectrum for
each channel. It is a common approach to use wavelet trans-
formations for the time-frequency analysis (TFA) of the data.
To identify the signal components we decompose the data into
time-frequency-space atoms using Parallel Factor (PARAFAC)
analysis. In this paper we show that a TFA based on the Wigner-
Ville distribution together with the recently developed closed-
form PARAFAC algorithm enhance the separability of the signal
components. This renders it an attractive approach for process-
ing EEG data. Additionally, we introduce the new concept of
component amplitudes, which resolve the scaling ambiguity in
the PARAFAC model and can be used to judge the relevance of
the individual components.

Index Terms— Tensor, Multi-dimensional signal processing,
PARAFAC, Event Related EEG, Wigner-Ville Distribution

1. INTRODUCTION
In this contribution we focus on analyzing measured electroen-
cephalographic (EEG) data to find the components of specific ac-
tivity on the scalp. This analysis can also be used to detect and
localize epileptic seizure onset zones on the scalp as well as pro-
jections of cognitive processing like speech or auditory handling.
Unfortunately, different sources in the brain can produce the same
EEG pattern on the scalp, which renders them in general non-
separable. Source localization algorithms, such as LORETA [11]
or dipole fitting methods can resolve this ambiguity by imposing
additional assumptions. For further improvements of these methods,
preprocessing in form of subspace decompositions, e.g., Princi-
ple Component Analysis (PCA), Independent Component Analysis
(ICA), Singular Value Decomposition (SVD), or beamforming al-
gorithms [6] have been applied. However, these methods cannot
exploit the multi-dimensional nature of the EEG data. Moreover,
to obtain matrix decompositions like PCA or ICA, physically irrel-
evant assumptions like orthogonality or independence have to be
imposed. Therefore, tensor decompositions are a more promising
approach to handle EEG signals. Especially the well known Par-
allel Factor (PARAFAC) analysis is a powerful tool for analyzing
EEG data, because it is essentially unique under mild conditions [1]
without any artificial constraints, such as orthogonality. In the last
years PARAFAC was applied to EEG signals, e.g., for estimating
sources of cognitive processing [9], for the analysis of event related
potentials (ERP) [10], and for epileptic seizure localization [16].

In order to resolve the temporal evolution as well as the fre-
quency content of the EEG recordings, a time-frequency analysis
(TFA) is applied for each channel. Therefore, the data is analyzed

over three dimensions, i.e., time, frequency, and space (channels).
Different TFA algorithms have been studied for the analysis of EEG
signals [5]. The most common time-frequency decomposition is the
continuous wavelet transformation (CWT) [14]. However, we have
shown in [7] that wavelet analysis may not provide adequate time
and frequency resolution for EEG data.

In this contribution we use a TFA method based on the Wigner-
Ville distribution. Thereby, we suppress the effect of cross terms by
using the reduced interference distribution [5]. This method shows
a significantly improved time-frequency resolution and therefore
also improves the PARAFAC analysis. We compare the results
to the standard wavelet based techniques. For the computation of
the PARAFAC decomposition the most common methods to date
are based on iterative alternating least squares (ALS) algorithms.
However, these algorithms may require many iterations and are
not guaranteed to converge to the global minimum. The recently
developed closed-form PARAFAC algorithm [12, 13] outperforms
the iterative approaches. Therefore, we use it to decompose the
time-frequency distributions into time-frequency-space atoms and
to identify the different signal components of the EEG data.

This paper is organized as follows: In Section 2 we clarify the
notation and define the operators and symbols that are used. In Sec-
tion 3 we discuss the signal processing steps to process EEG sig-
nals. Then, Section 3.1 briefly presents the methods for the time-
frequency analysis of the EEG data and Section 3.2 describes the
closed-form PARAFAC decomposition. Here we also show how to
resolve the scaling ambiguities in the PARAFAC model. In Sec-
tion 4 we present the results of the event related EEG analysis based
on measurements, before drawing the conclusions in Section 5.

2. NOTATION
To facilitate the distinction between scalars, vectors, matrices, and
higher-order tensors, we use the following notation: scalars are
denoted by lower-case italic letters (a, b, ...), vectors by boldface
lower-case italic letters (a, b, ...), matrices by boldface upper-
case letters (A, B, ...), and tensors are denoted as upper-case,
boldface, calligraphic letters (A, B, ...). This notation is consis-
tently used for lower-order parts of a given structure. For example
A ∈ C

I1×I2×···×IN represents an N -dimensional tensor of size
In along mode n. Its elements are referenced by ai1,i2,...,iN

for
in = 1, 2, . . . In and n = 1, 2, . . . , N . Furthermore, the i-th col-
umn vector of a matrix A is denoted as ai. For matrices we use the
superscripts T, H, −1, + for transposition, Hermitian transposition,
matrix inverse, and Moore-Penrose pseudo-inverse, respectively.
The Kronecker product and the Khatri-Rao product (column-wise
Kronecker product) of two matrices A and B are expressed by
A ⊗ B and A � B, respectively.

The tensor operations we use are consistent with [8]. The
higher-order norm of a tensor A, symbolized by ‖A‖H, is de-
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fined as the square root of the sum of the squared magnitude of all
elements in A. The n-mode vectors of a tensor A are obtained
by varying the n-th index in of the tensor elements ai1,i2,...,iN

within its range (1, 2, . . . , In) while keeping all the other indices
fixed. The matrix unfolding of the tensor A, denoted by [A](n) ∈

C
In×I1·...·In−1·In+1·...·IN contains all the n-mode vectors of the

tensor A. The n-mode product of a tensor A ∈ C
I1×···×IN and a

matrix U ∈ C
Jn×In is denoted as (A×nU ) ∈ C

I1×···×Jn×···×IN .
It is obtained by multiplying all n-mode vectors of A from the left
hand side by the matrix U . The outer product of an N -dimensional
tensor A and a K-dimensional tensor B, denoted by (A ◦ B),
is a (N + K)-dimensional tensor whose elements are given by
(A ◦ B)i1,...,iN ,j1,...jK

= ai1,...,iN
· bj1,...jK

. An N -dimensional
tensor A ∈ C

I1×···×IN is of rank one if and only if it can be written
as the outer product between N non-zero vectors c(n) ∈ C

Mn , such
that A = c(1) ◦ . . . ◦ c(N). The three-dimensional identity tensor
I3,d is defined as

I3,d =

d�
n=1

en,d ◦ en,d ◦ en,d ∈ R
d×d×d , (1)

where en,d represents the n-th column of a d × d identity matrix
(also termed the n-th pinning vector of size d).

3. SIGNAL PROCESSING STEPS
The processing of EEG data is a very challenging task due to the
complex nature of these signals, e.g., they are non-stationary and suf-
fer from very low signal to noise ratios. Moreover, they are affected
by correlated noise with unknown distribution and artifacts originat-
ing from eye blinks, eye movements, and muscle movements as well
as from diverse technical and biological distortions. Therefore, a

Measured
EEG data

Prepro-
cessing

Time-frequency
analysis

PARAFAC
analysis

Fig. 1. Signal processing steps for the identification of signal components
in event-related EEG data.

suitable preprocessing has to be applied in the form of filters, ref-
erence EEG channels, and averaging over numerous trials. Further-
more, the EEG data has to be divided into smaller stationary time
windows. Afterwards, the time-frequency analysis is applied to each
channel individually, in order to resolve the temporal evolution as
well as the frequency content of the EEG data. The components of
the resulting three-way signal, which changes in frequency, space
(channels), and time, are extracted via parallel factor (PARAFAC)
analysis (see Figure 1).
3.1. Time-Frequency Analysis
There exist a large number of methods that can be applied to de-
compose EEG signals into their time-frequency content [5]. An ap-
proach that is very often used is the continuous wavelet transforma-
tion (CWT). The continuous wavelet transform C(a, τ ) at scale a of
a signal x(t) is defined as

C(a, τ ) =

∞�
−∞

x(t)ϕ(a, t, τ ) dt , (2)

where ϕ is the chosen wavelet. Common choices include the class of
biorthogonal wavelets, Debauchy wavelets, and the Morlet wavelets
[14]. The connection between the scale a and the frequency f is
given by

f ≈
fc

a · Δt
, (3)

where fc is the center frequency of the wavelet and Δt is the
sampling interval for x(t). The disadvantage of CWT-based time-
frequency preprocessing is the limited resolution, especially in the
low-frequency region, which is very important in EEG signal analy-
sis.

A more powerful approach to time-frequency analysis is given
by the family of Wigner-Ville distribution functions, based on the
seminal work of Wigner [17] in 1932 and Ville [15] in 1948. The
distribution is based on the temporal correlation function (TCF)
qx(t, τ ) of the signal x(t) which is defined as [5]

qx(t, τ ) = x(t +
τ

2
)x∗(t −

τ

2
) . (4)

The Wigner-Ville distribution (WVD) Wx(t, f) of x(t) is defined as
the Fourier transform of the TCF with respect to the lag variable τ

Wx(t, f) =

∞�
−∞

qx(t, τ )e−j2πfτdτ . (5)

Therefore, the WVD is a quadratic, real-valued time-frequency dis-
tribution (TFD). The ambiguity function Ax(θ, τ ) is symmetric in
τ and is defined as the inverse Fourier transform of the TCF with
respect to the time t [5]

Ax(θ, τ ) =

∞�
−∞

qx(t, τ )ej2πθtdt . (6)

Thus, the ambiguity function and the Wigner-Ville distribution are
related by the two-dimensional Fourier transform. The main draw-
back of the time-frequency analysis based on the TCF is that it pro-
duces cross terms in Wx(t, f) as well as in Ax(θ, τ ). On the other
hand, its advantage is that time and frequency resolution can be ad-
justed separately. In 1966 Cohen introduced an overall class of TFDs
based on the WVD which allow the use of kernel functions for re-
ducing cross terms [4]. This group of TFDs Px(t, f) is defined as

Px(t, f) =

∞�
−∞

∞�
−∞

Ax(θ, τ )Θ(θ, τ )e−j2πθt−j2πτfdθdτ , (7)

where Θ(θ, τ ) is the kernel function. A large number of TFDs have
been proposed, each differing only in the choice of Θ(θ, τ ). These
kernel functions can be used to suppress the effect of the cross terms
on the TFD. Choi and Williams [3] introduced the reduced interfer-
ence distribution (RID), which is a TFD based on the exponential
kernel function

K(θ, τ ) = e−
θ
2

τ
2

σ , (8)
where σ > 0 is a scaling factor which influences the cross term
suppression.

3.2. Three-Way PARAFAC Analysis
After the time-frequency analysis the EEG data is represented by
time-varying frequency distributions for every channel. This three-
way data can be expressed in form of a tensor

X ∈ R
NF×NT×NC , (9)

where NF and NT are the number of samples in frequency and time,
and NC is the number channels, respectively. In order to separate
the signal components in this tensor, we use a multi-dimensional
extension of the singular value decomposition that is known as the
PARAFAC decomposition [1]. Thereby, we decompose a tensor into
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a minimal sum of rank one components. In the absence of noise, the
PARAFAC model for the tensor (9) can be represented as

X =

d�

n=1

an ◦ bn ◦ cn , (10)

where the vectors an ∈ R
NF , bn ∈ R

NT , and cn ∈ R
NC , repre-

sent the frequency, time, and space (channel) signatures of the n-th
PARAFAC component. Moreover, d represents the number of signal
components. In practice the PARAFAC model does not fit the data
exactly for a number of reasons:

• The measured EEG data is affected by correlated noise with
an unknown distribution. The signal to noise ratio is very low.

• The signal components are not necessarily rank one. The
number of signal components is unknown.

• The superposition of the components is not linear.

Therefore, we require a robust algorithm for the computation of
an approximate fit of the PARAFAC model to the data tensor X .
Among the many existing PARAFAC methods we propose to use the
recently developed closed-form PARAFAC algorithm [12, 13]. This
algorithm is based on the higher order singular value decomposition
(HOSVD) of X which is defined as [8]

X = S ×1 U1 ×2 U2 ×3 U3 , (11)

where S ∈ R
NF×NT×NC is the full core tensor of same size as

X . The unitary matrices U1 ∈ R
NF×NF , U2 ∈ R

NT×NT and
U3 ∈ R

NC×NC provide an orthonormal basis for the 1-, 2-, and 3-
mode vector spaces of X , respectively. Thus, the HOSVD can easily
be obtained from the matrix singular value decomposition of the n-
mode matrix unfoldings of X [8]. In the non-degenerate case (d ≤
min{NF, NT, NC}) the HOSVD of the tensor X can be truncated
to

X = S
[d] ×1 U

[d]
1 ×2 U

[d]
2 ×3 U

[d]
3 , (12)

where S
[d] ∈ R

d×d×d and where U
[d]
1 , U

[d]
2 and U

[d]
3 are of size

(NF × d), (NT × d), and (NC × d), respectively. By defining the
set of matrices A = [a1, . . . ad] ∈ R

NF×d, B = [b1, . . . bd] ∈
R

NT×d, and C = [c1, . . . cd] ∈ R
NC×d we can rewrite the

PARAFAC model (10) in terms of the identity tensor I3,d

X = I3,d ×1 A ×2 B ×3 C . (13)

Comparing the equations (12) and (13) indicates that there is a link
between the PARAFAC model and the HOSVD. To exploit this con-
nection we introduce the transformation matrices T1 ∈ R

d×d, T2 ∈
R

d×d, and T3 ∈ R
d×d such that

A = U
[d]
1 · T1 , B = U

[d]
2 · T2 , C = U

[d]
3 · T3 . (14)

Inserting these equations into (13) and comparing it with (12) yields

S
[d] ×1 T

−1
1 ×2 T

−1
2 ×3 T

−1
3 = I3,d . (15)

Therefore, the closed-form PARAFAC algorithm estimates the trans-
formation matrices that diagonalize the truncated core tensor S

[d]

to the identity tensor I3,d. In [12, 13] it is shown that this can
be accomplished very efficiently by means of joint matrix diago-
nalizations, also in the degenerate case. The resulting closed-form
algorithm outperforms iterative approaches especially in critical sce-
narios, since it does not require alternating least squares iterations.
Moreover, it provides the opportunity to obtain a tradeoff between
accuracy and computational time.

Fig. 2. Time evolution of all 64 EEG channels. The data is averaged over
1600 trials of a 20 ms light flash to the right eye of a 23 years old healthy
woman. We can see that the occipital channels show the response earlier
than the frontal ones.

3.2.1. Scaling ambiguity in PARAFAC

The PARAFAC model (10) is unique under mild conditions up to
a scaling ambiguity for the component vectors an, bn, and cn and
a permutation of the components an ◦ bn ◦ cn. Due to the non-
orthogonality of the PARAFAC decomposition, the higher order
norms of the component tensors an ◦ bn ◦ cn do not add up to the
higher-order norm of X . Bro [1] suggested to judge the influence of
each of the components based on ‖X − an ◦ bn ◦ cn‖H. Because
of the unknown dependency between the components, we suggest
to fit all components jointly to the original data tensor X in a least
squares sense. Therefore, we normalize all component vectors to
unit Frobenius norm, such that

a
′

n =
an

‖an‖F
, b′n =

bn

‖bn‖F
, c′n =

cn

‖cn‖F
∀n = 1, . . . , d . (16)

Note that this normalization leads to ‖a′n ◦ b′n ◦ c′n‖H = 1 for
all n = 1, . . . , d. Next we introduce the PARAFAC component
amplitudes γn for n = 1, . . . , d by

X ≈

d�

n=1

γn · a′n ◦ b
′

n ◦ c
′

n . (17)

To determine all amplitudes jointly we rewrite this equation accord-
ing to

vec(X ) =
�
vec

�
a
′

1 ◦ b
′

1 ◦ c
′

1

�
, . . . , vec

�
a
′

d ◦ b
′

d ◦ c
′

d

��
· γ

=
�
C
′ � B

′ � A
′
�

γ , (18)

where the matrices A′ = [a′1, . . . , a
′

d], B′ = [b′1, . . . , b
′

d], and
C ′ = [c′1, . . . , c

′

d] contain the normalized component vectors. The
vector γ = [γ1, . . . , γd]

T contains all component amplitudes. The
least squares solution for the set of linear equations (18) is given by

γ =
�
C
′ � B

′ � A
′
�+

vec(X ) . (19)

In practical applications the PARAFAC model often does not exactly
fit the data, and no apriori knowledge can be used to resolve the
scaling and permutation ambiguity. In these cases we suggest to
judge the influence of the components based on the magnitudes of
the component amplitudes γn. Please notice that for the real valued
case the normalized model (17) still has a sign ambiguity, e.g., two of
the three component vectors can be multiplied by minus one without
changing the rank one component.
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4. EXPERIMENTAL RESULTS
The EEG signal is recorded from a 23 year old woman, healthy and
right-handed. The position of the 64 EEG electrodes is based on
the international 10-10-system [2] with earlobe references [(A1 +
A2)/2]. The sampling frequency is chosen to 1000 Hz. For the pre-
processing of the raw signal, several filters are applied: a 7 Hz high-
pass, a 135 Hz low-pass and a band-stop filter between 45 and 55 Hz.
For the investigation of effects in the field of event related potentials,
we record EEG data triggered as a function of a visual stimulus. The
subject sits in front of a hemispherical perimeter. The stimulus is a
20 ms central light flash from a white LED to the right eye. The trig-
gered EEG responses to this stimulus are averaged over 1600 trials
for all channels (see Figure 2). For the signal component analysis
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Fig. 3. Signal components for the TFA based on CWT with Morlet wavelets.
The components are represented as topographic plots of the space signatures
(top), together with the time-frequency signatures (bottom). The bars left to
each component represent the relative maginitude of the PARAFAC ampli-
tudes. The analysis window reaches from 101 to 180 ms.
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Fig. 4. Signal components for the TFA based on the reduced interference
distribution. The analysis window reaches from 101 to 180 ms. Due to the
increased time-frequency resolution the desired components are clearly re-
vealed.

we divide the recorded EEG data into windows of length 80 ms to
assure stationarity. In each window we apply two different methods
for the time-frequency analysis: the CWT based on Morlet wavelets
and the reduced interference distribution (RID, see Section 3.1). Af-
terwards, we use the closed-form PARAFAC algorithm (Section 3.2)
to identify the signal components. The PARAFAC model is nor-
malized according to equation (17). The number of components is
set to three, and they are ordered according to the magnitude of the
PARAFAC amplitudes defined in Section 3.2.1. Figure 3 shows the
results for the time window between 100 ms and 180 ms based on
the CWT with Morlet wavelets. The components are represented as
a topographic plot of the space signatures, together with the associ-
ated time-frequency signature. The bar on the left of each component
represents the relative magnitude of its PARAFAC amplitude. From
previous studies based on potential mapping, a strong component in
the lower right hemisphere (visual cortex) is expected. Because of
the insufficient time resolution for low frequencies and the small fre-
quency resolution for high frequencies, the desired component can-
not be identified with the CWT. However, the desired component is

clearly represented in the results based on the RID time-frequency
analysis (Figure 4). The comparison of the time-frequency signa-
tures of both results clearly reveals the improved time and frequency
resolution of the RID. This leads to an increased spatial resolution
of the signal components.

5. CONCLUSIONS
In this contribution we have shown that an appropriate time-
frequency analysis (TFA) scheme is an important factor for the
identification of signal components in EEG data. We have shown
that Wigner-Ville distribution based TFA methods provide an in-
creased time-frequency resolution, which leads to an increased
spatial resolution of the signal components. The effect of cross
terms can be suppressed by using the reduced interference distribu-
tion (RID). This technique provides particularly instructive results in
combination with the closed-form PARAFAC algorithm to identify
the signal components in measured event related EEG data. In order
to judge the influence of the different components we have intro-
duced the novel component amplitudes, which resolve the scaling
ambiguity in the PARAFAC model.
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