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ABSTRACT

To reduce the effects of artifacts in electroencephalography

(EEG), we propose the use of Morphological Component

Analysis (MCA). Taking advantage of the sparse representa-

tion of data in overcomplete dictionaries, MCA decomposes

EEG signals into parts that have different morphological char-

acteristics. For denoising purpose, the parts related to artifacts

are removed. An overcomplete dictionary is constructed us-

ing the discrete cosine transform, Daubechies wavelet basis,

and Dirac basis. Movement-related potentials (MRP) and

EEG signals contaminated by spikes, eye-blinks, and muscle

artifacts caused by eye-brow raising are used to evaluate the

performance of the method. The results demonstrate that

MCA can be used to decompose the single-channel EEG

signals into artifacts and MRP components. The correlation

coefficient between the denoised MRP and the original MRP

using MCA is significantly higher than that obtained using

stationary wavelet transform.

Index Terms— Electroencephalogram, Artifacts, Brain-

Computer Interface, Denoising, Morphological Component

Analysis

1. INTRODUCTION

Electroencephalography (EEG) that measures the electrical

activity of the brain can be used to operate a brain-computer

interface (BCI) system. EEG signals are often contaminated

by artifacts such as ocular artifacts, muscle artifacts, power

line interference, and electrode artifacts. The removal of arti-

facts from the EEG signals is crucial as the artifacts can affect

the detection of EEG features such as movement-related po-

tentials (MRP), as well as event-related desynchonization of

the mu and beta rhythms. This can cause false activations in a

BCI system and cause frustration in users. Yet, little attention

has been paid in BCIs to the detection and removal of artifacts

in general, and to muscle artifacts in particular.

Regression analysis is widely used to remove ocular

artifacts from EEG signals [1]. This method has the disad-

vantage of requiring the recording of source signals from

the electrooculogram (EOG) channel. Moreover, it may

also remove some useful information in the EEG signals.

Blind source separation and independent component analysis

have also been proposed for artifact removal [2, 3]. Such

methods, however, require multi-channel data and long data

epochs to produce reliable results [3]. An alternative arti-

fact removal method, based on wavelet denoising, has been

proposed. For example, it has been used to remove ocular

artifacts from EEG signals [4]. This method can be applied to

single-channel data. Unfortunately, suppressing the wavelet

coefficients in the low frequency range may also remove the

low frequency components of the EEG signals.

There is presently a growing interest in sparse signal rep-

resentation in which the signals are decomposed into sev-

eral sparse components. Xu and Yao [5] propose a sparse

component decomposition algorithm based on a mixed over-

complete dictionary to improve the estimation of evoked po-

tentials. The mixed dictionary is constructed with an over-

complete wavelet and an overcomplete discrete cosine func-

tion dictionary for the representation of the evoked potentials

and the background noise respectively. However, artifacts

also have transient properties that can be represented by the

wavelet dictionary. The method may not be effective in the

presence of artifacts.

In this paper, we present a method of removing artifacts

using Morphological Component Analysis (MCA). MCA de-

composes EEG signals into components that have different

morphological characteristics. Each component is sparsely

represented by different bases (discrete cosine transform

(DCT), wavelet and Dirac basis). We demonstrate the po-

tential of this method in reducing the effects of artifacts in

EEG signals, especially MRP as this can be used to operate

a BCI system. The proposed method has the advantage that

it can be applied to single-channel EEG data and no source

signals are required to remove the artifacts. To the best of

our knowledge, MCA has not been applied to EEG signals to

remove artifacts even though it has been shown to have inter-

esting applications in image inpainting [6] and MEG signal

decomposition [7].

2. METHODOLOGY

2.1. The MCA Concept

A dictionary D is a collection of waveforms or atoms, such as

columns from wavelet, Fourier and Dirac basis [8]. A signal is
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sparse in D if it can be represented using a linear combination

of a few atoms only. By merging several complete dictionar-

ies, an overcomplete dictionary is contructed [8]. Although

the signal representation is no longer unique, the class of sig-

nals that can be sparsely represented using the dictionary is

much larger.

Taking advantage of the sparse representation of data in

overcomplete dictionaries, MCA assumes that a signal s ∈
R

N can be represented by a linear combination of m mor-

phological components [6]:

s = Φα =
m∑

i

Φ(i)α(i)

where Φ = [Φ(1) . . . Φ(m)], α = [(α(1))T . . . (α(m))T ]T , and

α(i) is a coefficient vector corresponding to dictionary Φ(i).

Each component, s(i) = Φ(i)α(i), represents a signal type

that has different morphological structures. A morphologi-

cal component that is sparse in a particular dictionary Φ(i)

will generally not be sparse in other dictionaries, Φ(k), i �= k.

Therefore, Φ(i) plays a role in discriminating different signal

contents [6].

The problem of finding the sparsest representation can be

formulated as [6]:

min
α

m∑

i=1

‖α(i)‖0 subject to s = Φα

Because this problem is inherently combinatorial, and there-

fore intractable, the basis pursuit method:

min
α

m∑

i=1

‖α(i)‖1 subject to s = Φα, (1)

suggests the substitution of the �0-norm by the �1-norm that

also promotes sparsity in the solutions [8].

2.2. Data Description

The EEG data used in this study were obtained from two dif-

ferent experiments:

• Data A: EEG data obtained from an EEG artifact study [9].

The EEG data contained artifacts caused by eye-brow rais-

ing, jaw clenching, swallowing, and eye-blinks. The EEG

signals were recorded at the sampling rate of 256 Hz with

electrodes placed over the primary motor cortex area.

• Data B: EEG data obtained from an asynchronous brain-

controlled switch study [10]. MRP trials were collected in

this study. During the experiment, the subject performed

an actual right index finger flexion (by pressing a finger

switch). The EEG signals were recorded at the sampling

rate of 128 Hz with electrodes placed over the supplemen-

tary motor area and the primary motor cortex area.

2.3. EEG Signal Denoising Using MCA

The EEG signals are modeled using the MCA concept. We

assume that a single-channel EEG signal (s ∈ R
N ) can be

represented by a linear combination of three morphological

components:

s = Φdbαdb + Φcαc + Φdαd

where αdb, αc, and αd are the coefficient vectors correspond-

ing to the complete dictionaries of Φdb, Φc, and Φd, denoting

respectively the Daubechies wavelet (db8), the discrete cosine

transform (DCT), and the Dirac basis.

Spikes in the EEG signals can be caused by muscle ar-

tifacts, electronic noise, etc. The spikes can be represented

sparsely by Dirac basis (an identity matrix). The background

EEG signals and event-related potentials are represented by

the DCT basis. Finally, artifacts such as ocular and mus-

cle artifacts that have transient properties are represented by

Daubechies wavelet basis (db8) with 5 levels of decomposi-

tion.

The mixed overcomplete dictionary Φ ∈ R
N×3N con-

sists of the three complete dictionaries mentioned above: Φ =
[Φdb Φc Φd]. Φ is constructed using SPARCO (a toolbox

developed for testing reconstruction algorithms) [11]. In or-

der to reduce the processing time and improve robustness, the

basis pursuit denoise model is used [8]:

min

m∑

i=1

‖α(i)‖1 subject to ‖s − Φα‖2 ≤ σ (2)

where σ is an estimation of the noise level in the data. If σ =
0, the solution obtained is essentially the same as the one ob-

tained using basis pursuit. In this study, we use SPGL1 [12],

an optimization algorithm, to solve Equation (2). σ is set to

10 as this value is found not to affect significantly the perfor-

mance of the method while reducing the processing time by

approximately a factor of two. To find the value of σ that pro-

vides an optimal tradeoff in performance and fast processing

speed, a more comprehensive study will be conducted in the

future.

Several four-second EEG segments from Data A contam-

inated by 60 Hz noise, jaw clenching, eye blinks, eye-brow

raising, and swallowing are down-sampled to 128 Hz and

decomposed using MCA. Next, the averaged MRP obtained

from Data B is then mixed with EEG segments that contain

artifacts from Data A. The length of the EEG segments is four

seconds. Only the EEG signals from channel C1 and FC1 are

processed using both the MCA and stationary wavelet trans-

form (SWT) algorithms. These electrodes are selected be-

cause they are positioned near the contralateral motor cortex

area of the brain, which is activated during right finger flex-

ion.

SWT (db8 with 5 levels of decomposition) using soft-

thresholding is implemented in Matlab. For both the MCA
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and SWT, the difference between the denoised EEG signals

of the two channels (bipolar) is computed. To quantify the

performance of each method, the correlation coefficient (CC)

between the bipolar averaged MRP and the bipolar denoised

EEG signal is used in this study.

3. EXPERIMENTAL RESULTS

Fig. 1 shows an example of the morphological components

obtained from an EEG signal contaminated by an eye-blink

and muscle artifacts caused by swallowing (column 1), and

an EEG signal contaminated by 60 Hz power line noise, an

eye-blink, and muscle artifacts caused by jaw-clenching (col-

umn 2). The MCA method shows good ability to separate

the background EEG signals from the artifacts (except 60 Hz

noise because it is sparsely represented by the DCT basis).

The results show that the selected dictionaries are suitable.

The muscle and eye-blink artifacts are represented by both

the Daubechies wavelet and Dirac bases. The effects of the

artifacts on the EEG signals can therefore be reduced by re-

moving the db8 and Dirac components. The 60 Hz noise can

be easily removed by removing the DCT coefficients corre-

sponding to that frequency. However, we should not assume

that all EEG-related information are completely captured in

the DCT component. When MCA is applied to EEG segments

free of artifacts, the EEG signals are found to be represented

by both the Daubechies wavelet and DCT.

Fig. 1. Decomposition of the EEG signals contaminated by

artifacts caused by eye-blink and swallowing (column 1), and

power line interference, jaw-clenching and eye-blink (column

2) using MCA.

Fig. 2 shows the averaged MRP contaminated by eye-

brow raising artifacts and the components obtained using

MCA and SWT. The MRP can be observed in the DCT com-

ponent obtained using MCA, but not in the SWT denoised

MRP. The results obtained using SWT denoising method

could possibly be improved if the threshold is carefully ad-

justed using prior knowledge of the signals. Nevertheless,

the wavelet denoising method is not as flexible as the MCA

because only one type of waveform is used in processing

the signals. Different sources of artifacts such as spikes and

ocular artifacts may have different morphological character-

istics. For example, spike-like artifacts cannot be removed

efficiently using SWT (with Daubechies wavelet).

Fig. 2. Decomposition of the averaged MRP contaminated by

muscle artifacts (eye-brow raising) using MCA and SWT.

The correlation coefficient (CC) values between the orig-

inal averaged MRP and the estimated MRP obtained using

MCA and SWT are presented in Table 1. The CC value in

general is not very high because the MRP is not mixed with

pure artifacts but with EEG segments contaminated with ar-

tifacts. Hence, the estimates obtained from MCA and SWT

may contain the background EEG signals in both the MRP

and the contaminated EEG signals. As shown, the results ob-

tained are promising because the CC values of MCA are sig-

nificantly higher than SWT. MCA has a better performance

than SWT due to the use of several waveforms in the over-

complete dictionary, which can help to explain the data better.

MCA can possibly be applied to shorter segments of data.

In our preliminary study, we use MCA to decompose a one-

second single-trial MRP contaminated by an eye-blink, as

shown in Fig. 3. The MRP is well represented by the DCT

basis and the eye-blink by the db8 basis. Future experiments

will study these findings in more detail.
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Table 1. CC values of MCA and SWT obtained from Test 2.
Artifacts MCA SWT

Eye-brow raising 0.5485 0.2925

Eye-blink + spike 0.5524 0.2944

Fig. 3. Decomposition of the single-trial MRP contaminated

by eye-blink artifacts using MCA.

4. CONCLUSIONS

The concept of decomposing the signals into atomic parts that

have different morphological characteristics is appealing. In

this study, we focus on demonstrating the feasibility of using

the morphological diversity of the signals to reduce the ef-

fects of artifacts such as ocular and muscle artifacts in the

EEG signals. This is achieved by using an MCA that de-

composes EEG signals into Dirac, DCT and wavelet compo-

nents. Components related to the artifacts are then discarded.

The proposed method shows the advantage of representing

the signals by a mixed overcomplete dictionary over the con-

ventional methods such as wavelet denoising that uses only a

single type of waveform. In the future, we plan to look into

the construction of an overcomplete dictionary that is more

flexible, and the use of algorithms such as K-SVD [13]. We

are also interested in extending the problem to the case of

multichannel EEG signals. A better way of evaluating the

performance of the algorithm is required as correlation coef-

ficient alone is not sufficient for this purpose. For example,

we can apply feature extraction and classification algorithms

to the EEG signals and find the error rate of a BCI system

when MCA is used to preprocess the signals.
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