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ABSTRACT

Automatic Electrocardiogram (ECG) analysis, especially
QRS detection, is still a challenging task. This is even more
the case when ECG is acquired during Magnetic Resonance
(MR) examination. The MR environment highly distorts
ECG, with Hall Effect, due to the important static magnetic
field, and artifacts, caused by fast switching magnetic field
gradients. Detection of QRS complexes is then affected. In
this paper, a new specific MR QRS detector is presented.
This method is based on the modulus maximum lines and on
the Lipschitz exponent estimation they offer. The use of this
regularity characterization enables to distinguish between
QRS complexes and MR artifacts. This detector outper-
forms existing algorithms with almost 99% sensitivity and
positive prediction value.

Index Terms— Electrocardiography, Magnetic Reso-
nance Imaging, Wavelet

1. INTRODUCTION

Electrocardiogram (ECG) is an important diagnostic tool in
medicine. Automatic ECG analysis requires accurate wave
detections, especially the R-wave (or peak of the main ECG
complex (QRS)). Once QRS complexes have been identified,
a more detailed examination of the ECG can be performed.
This problem is unfortunately tough since QRS complexes
have time-varying morphology, are subject to physiological
variations and are often corrupted by noise.ECG analysis is
also required during Magnetic Resonance (MR) examination,
mainly for two reasons: patient monitoring and sequence
synchronization. The MR environment, namely high static
magnetic field (1.5T- 3T), Radio-Frequency pulses and fast
switching magnetic field gradients (33mT/m-50mT/m), un-
fortunately induces in complicated ECG acquisitions [1]. The
blood ejection through the aortic valve generates an artificial
wave on ECG [2], called Hall Effect and the magnetic field
gradients produce highly disturbing artifacts, which can eas-
ily be confused with QRS complexes. In order to deal with
these two principal MR artifacts, specific signal processing
tools have been designed. Two research avenues have mainly
been explored. (a) First a denoising method, using the mag-
netic field gradient signals, has been developed [1]. Applying
existing QRS detection algorithms on these denoised signals
can then lead to accurate ECG analysis. This kind of method
unfortunately requires a connection to the MR gradient cabi-
net. (b) A second approach consists in the design of a MR spe-
cific QRS detector [3], based on the Vectocardiogram (VCG),

a 3D representation of the electrical activity. This method is
unable to process low amplitude ECG.
Wavelet transforms have indeed been widely studied these
last years and have shown to be well adapted for ECG signal
processing [4]. ECG acquired during MR examination (MR-
ECG) are however unusual and existing algorithms are not
suitable for this problem.
In this paper a new MR specific QRS detector based on
Wavelet Transform is proposed, where modulus maximum
lines are used to detect singularities in ECG. In order to dis-
criminate MR artifacts from QRS complexes, some regularity
characterization is also used, which is an innovation compared
to existing wavelet based detectors.

2. THEORY

Mallat et al. [5] have demonstrated how it is possible to link
singularity detection with the wavelet transform, especially
wavelet modulus maximum lines. As R-waves are actually the
most important singularity in the ECG signal, the application
of Mallat’s theory for R wave detection was quasi immediate.
Many articles dealing with this problem have then emerged
[6–10]. They differ by their application, the wavelet type or
by some detection steps, but all rely on the same theory.
Let f(x) ∈ L2(R) and ϕ(x) ∈ L2(R). The wavelet transform
of f(x) is defined as:

Wf(s, x) =
1√
s

Z ∞

−∞
f(t)ϕ∗(

t − x

s
)dt, (1)

where s is the dilatation parameter and x is the location pa-
rameter. The function ϕ(x) is said to be a wavelet if and only
if its Fourier Transform Φ(ω) satisfies:

Z ∞

0

|Φ(ω|2
|ω| dω =

Z 0

−∞

|Φ(ω|2
|ω| dω = Cϕ < ∞. (2)

A modulus maximum is then any point (s0, x0) such that
|Wf(s0, x)| < |Wf(s0, x0)| when x belong to a right (resp.
left) neighborhood of x0, and |Wf(s0, x)| ≤ |Wf(s0, x0)|
when x belong to the left (resp. right) neighborhood of x0.
A connected curve in the scale space (s, x) along which all
points are modulus maxima is then called a modulus maxi-
mum line.
Mallat et al. [5] have demonstrated that all singularities of
f(x) can be located by following the modulus maximum lines
when the scale goes to zero. Moreover the way to character-
ize the singularities by using the modulus maximum lines has
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Fig. 1. MR-ECG Lead positioning.

also been illustrated.
In mathematics, the local regularity of a function can be mea-
sured with the Lipschitz exponent.
Let n be a positive integer and n ≤ α < n + 1. A function
f(x) is said to be Lipschitz α, at x0, if and only if there exist
two constants A and h0 > 0, and a polynomial of order n,
Pn(x), such that for h < h0

|f(x0 + h) − Pn(h)| ≤ A|h|α. (3)

The superior bound of all values α such that f(x) is Lipschitz
α at x0 is called Lipschitz regularity of f(x) at x0.
Mallat et al. have demonstrated that a function f(x) is Lip-
schitz α at x0, if and only if there exists a constant B such
that

log |Wf(s, x)| ≤ log(B) + α log(s), (4)

where (s, x) ∈ Dx0 , and Dx0 = {(s, x)} such that there exists
a scale s0 > 0 and a constant C, such that all the modulus
maxima verify |x − x0| ≤ Cs.
Thus the Lipschitz regularity can be assessed by the maxi-
mum slope of straight lines that remain above log |Wf(s, x)|,
on a logarithmic scale. The higher is the Lipschitz exponent,
the more regular is the function, meaning that artifacts will
have much lower Lipschitz exponents than R waves.

3. MATERIALS

There are a large number of conventional ECG databases
(MIT-BIH, AHA...) which are unfortunately not relevant for
MR-ECG. The lead placement and the gradient related ar-
tifacts are specific to MR-ECG acquisitions. So a dedicated
database has been built. Appropriate institutional ethics ap-
proval and subject consent were obtained. Each subject un-
derwent a MR examination. The MR-ECG leads were posi-
tioned as shown in figure 1. MR-ECG was carried out by a
custom Maglife (Schiller Médical, Wissembourg, France) and
was recorded by the Signal Analyzer and Event Controller
(SAEC) [11]. Specific ECG sensors, developed by Schiller for
research purposes, with a [0.5-40Hz] bandwidth, were used.
The subjects were in a supine position, feet-first on a 1.5T
GE SIGNA HDx MR system (General Electric, Milwaukee,
WI). As in previous work [11], some MR sequences were used.
These sequences were chosen so that observed ECG distor-
tions correspond to all the situations encountered in clinical
applications, even worst cases. MRI acquisitions parameter
values (slice location (head-hip), field of view (FOV) (24cm-
60cm)) varied over a wide range. A total of thirteen healthy
subjects was studied, seven were males and six females with

an average age of 27.5±7.7, an average weight of 65.5kg±10.5
and an average body height of 172.7m ± 9.5. These subjects
represent a database containing 14681 QRS complexes and
about 3.5 hours of MR-ECG records.
MR gradient signals were acquired enabling the use of previ-
ous methods [1, 11, 12]. In order to correctly describe gradi-
ent signals, data acquisitions were made with a 10kHz sam-
pling frequency. Nevertheless, since ECG bandwidth is low
enough that such high sampling frequency is not needed,
down-sampling at 250Hz was then applied. ECG were an-
notated, QRS onsets were marked.

4. METHODS

As described in the section 2, the aim of the presented method
is to detect the modulus maximum lines corresponding to
QRS complexes. In order to discriminate the MR artifacts,
a local regularity characterization based on Lipschitz expo-
nent theory is done. For this purpose, the use of continuous
wavelet transform allows the modulus maximum lines to be
followed more accurately across the scale space and thus the
regularity characterization to be more precise. As in [10], the
method uses the “Mexican hat” wavelet, which is the second
derivative of a gaussian:

ϕ(x) = (1 − x2) exp

„
x2

2

«
. (5)

Let suppose the approximate angle of the QRS complex βQRS

to be known.
Let ECG1 and ECG3 be the signals acquired on lead 1 and
3 respectively.
Let define f(x) = r(x) exp(iβ(x)) the complex representation
of the Vectocardiogram, ECG3 − iECG1.
The input signal of the method, g(x), can be defined as the
projection of f(x) on the QRS vector, exp(iβQRS):

g(x) = r(x)(cos(β(x)) cos(βQRS) + sin(β(x)) sin(βQRS)).
(6)

The presented method can be split into two consecutive steps.
First, the continuous wavelet of g(x), Wg(s, x) is computed.
The modulus maximum lines are then searched across the
scales corresponding to the 10.5−21Hz frequencies as in [10].
The search starts at the scale s0 which corresponds to a 15Hz
frequency and the maxima above a predetermined threshold,
thress0 , have solely been kept, the way to determine this
threshold will be explained later.
Last, once the modulus maximum lines are found, the slope
of log |Wf(s, x)| on the logarithmic scale is estimated. This
estimation is done on two different scale segments, first seg-
ment corresponds to a 10.5− 15Hz frequency range and sec-
ond to a 15 − 21Hz range. These two estimations give some
information on the regularity of g(x), like a kind of Lipschitz
exponent estimation. Let call α1 and α2 these two coeffi-
cients, which are tested to belong to a predetermined range.
If both belong to their respective range, then the singularity
is assumed to be a QRS complex.
Let define the way to determine the different coefficients or
thresholds used by the method. For each subject, ECG were
acquired before entering the MR bore. These acquisitions
were then completely free from MR artifacts. In a first step,
the QRS complexes has been detected by using the wavelet
transform of r(x), the modulus maximum detection threshold
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has been set as three times the RMS of Wr(s0, x). As r(x) is
artifact free, all modulus maximum lines are assumed to cor-
respond to QRS complexes. As the QRS complexes are found,
the estimation of the approximate QRS angle, βQRS , is possi-
ble and by the way g(x) can be generated. The method is then
applied for g(x), the modulus maximum detection threshold,
thress0 , is then set as two times the RMS of Wf(s0, x). The
coefficients α1 and α2 can be estimated, so can their respec-
tive mean and standard deviation. These two parameters
permit to define the regularity test range as

[mi − 3 × max(0.5, stdi) mi + 3 × max(0.5, stdi))] , (7)

where i ∈ {1, 2}, mi and stdi are respectively the mean and
the standard deviation of the ith coefficient. These two last
parameters are adaptively updated as soon as a new QRS
complex is found.
All the different steps of the method are illustrated on fig-
ure 2. The figure shows these MR artifacts have a negative
Lipschitz exponent, whereas QRS have a positive one, and
artifacts are discarded by the regularity characterization.

4.1. Validation

The validation was done by assessing QRS detection perfor-
mance, which is evaluated by the sensitivity and the positive
prediction values. These parameters are defined by

Sensitivity = Se =
TP

TP + FN
(8)

Positive Prediction = +P =
TP

TP + FP
, (9)

where TP are the true positive, FN the false negative and
FP the false positive. These statistics were computed follow-
ing the ANSI/AAMI EC57 standard recommendations [13].
The presented method will be compared with state of art algo-
rithms: the LMS method [12] followed by the QRS detector
implemented in an industrial monitoring device (Argus PB
1000, Schiller AG, Baar, Switzerland) (LMS), the Vectocar-
diogram method (VCG) [3] and the presented method with
the regularity characterization step being ignored (Wavelet).

5. RESULTS

The results are highlighted in table 1.

Method Leads Se +P

(a) LMS 1 2 3 99.4 95.5

(b) VCG 1 3 97.1 86.5

Wavelet 1 2 3 99.6 96.0

Presented method 1 2 3 98.8 98.3

Table 1. QRS detection method comparison. Sensibility and
Positive prediction value of the different methods.

First point to highlight is the relative low positive predic-
tion value of the VCG, which is due to two subjects with low
amplitude ECG. The experiment was reconducted but with

these two subjects being discarded, results were better with a
98.6% sensitivity and a 96.1% positive prediction value. VCG
can lead to accurate detection with subjects having high am-
plitude ECG.
The LMS method combined with an industrial QRS detector
gives some good results, which prove the robustness of the
method. However its main drawback is the need of a con-
nection to the gradient cabinet, which is unfortunately not
usually available.
Wavelet almost corresponds to the wavelet based QRS detec-
tion method presented in [10]. Its high sensitivity shows it is
well adapted for QRS detection, but the positive prediction
value illustrates well that MR-ECG acquisitions are very spe-
cific and need some custom-made signal processing methods.
Finally the presented method gives the best compromise be-
tween sensitivity and positive prediction values. The use of
regularity characterization permits to discard both magnetic
field gradient artifacts and Hall Effect and thus to accurately
monitor patients during MR examination. The little loss of
sensitivity compared to wavelet is mainly due to the cases
where MR artifacts superimposed QRS complexes, which af-
fects the regularity characterization.

6. DISCUSSION

In conclusion, a new MR specific QRS detector has been pre-
sented. The method is based on the wavelet transform, espe-
cially the modulus maximum lines and on the Lipschitz expo-
nent theory. The use of this regularity characterization per-
mits to distinguish between QRS complexes, magnetic field
gradient artifacts and Hall Effect. This new method enables
an accurate patient monitoring during MR examination and
outperforms existing algorithms in term of QRS detection,
and even in term of needed input information, as only two
ECG leads are required and no connection to the MR gradi-
ent cabinet is needed.
The use of the regularity coefficients could even be extended
to some classification tasks. It is indeed foreseeable to use
these coefficients as inputs of some more complex classifica-
tion algorithms, which would permit to distinguish between
QRS complexes and extra-systolic beats.
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