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ABSTRACT

Recently we have developed a method for electroencephalogram

(EEG) dipole source localization based on particle filtering (PF). In

this study the method is combined with beamforming to eliminate

the noise which is spatially uncorrelated with the desired signal and

accordingly to improve its performance. The proposed beamform-

ing is an optimum, linear and data independent filter which can be

applied to stationary as well as non-stationary data. Simulation and

real data results have been provided to show its better performance

over PF and beamforming approaches for dipole source localization.

Index Terms— Beamforming, dipole source localization,

EEG, particle filter.

1. INTRODUCTION

EEG is a technique to record electrical activity of the brain

and has many clinical, psychological and engineering ap-

plications. EEG has an excellent temporal resolution in

comparison with other neuroimaging techniques such as fun-

tional magnetic resonance imaging (fMRI). However, EEG

suffers from poor spatial resolution and therefore mathemat-

ical methods are needed to localize the sources. A popular

approach in source localization is dipole source localization,

which assumes that one or multiple current dipoles repre-

sent the electric sources. The current dipoles are specified

with their three dimensional coordinates and their three di-

mensional moments. The relation between the multichannel

measured EEG data y and the dipole location ρ and moments

m can be given by

y = F(ρ)m (1)

where F is the gain or lead field matrix and is a non-linear

function of the dipole location ρ. The matrix F can be cal-

culated in a spherical or in a realistic head model, where the

conductivity and shape of different layers of the head are ob-

tained using imaging systems such as MRI.

Linearly constrained minimum variance (LCMV) beam-

forming as a spatial filter is a well established method in

EEG dipole source localization [1]. LCMV localizes a source

based on the output power of a spatial filter constrained to
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minimize the variance at the filter output while passing ac-

tivity from a location of interest. The transient and possible

correlation between the nature of neural activations in dif-

ferent parts of the brain often limits the performance of the

LCMV. Since EEG has variable sensitivity to the source lo-

cation, the noise gain of the filter varies as a function of

location. A strategy to account for this effect is to normalize

the output variance of the beamformer with respect to the

variance estimated at the presence of noise only [2]. There-

fore, in beamforming approach, localization of the source is

performed by finding a ρ that maximizes

P (ρ) =
tr{FT (ρ)C−1

y FT (ρ)}
tr{FT (ρ)C−1

n FT (ρ)} (2)

where Cy is an estimate of the signal covariance and Cn is

an estimate of the noise-only covariance.

Other methods including brain electrical source analy-

sis, multiple signal classification (MUSIC) and its modified

version, recursively applied and projected MUSIC (RAP-

MUSIC), also have been documented in the literature. Read-

ers may refer to a recent review in [3] for details.

Recently we proposed a method based on particle filter-

ing (PF) or sequential Monte Carlo techniques for localizing

and tracking of EEG dipoles [4]. PF is an emerging method-

ology which has attracted much attention in different areas of

science and engineering. In this study, we design a linear opti-

mum beamforming to be used in PF framework. The method

is called beamforming particle filter (BPF) and improves the

performance of PF by eliminating spatially uncorrelated noise

components.

2. METHODS

2.1. State space and particle filter

Consider the following state space

xk = fk−1(xk−1) + wk−1 (3)

yk = hk(xk) + vk (4)

where xk and yk are the sates and measurements at time k, fk

and hk are generally nonlinear functions, and wk−1 and vk

are assumed to be zero mean additive Gaussian white noise
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(GWN) with known covariance matrices Qw and Qv , respec-

tively.

We search for the filtered estimates of xk based on a set

of available measurements y1:k = {yi, i = 1, . . . , k} up to

time k. When the functions fk and hk are nonlinear or dis-

tribution of the state is non-Gaussian, PF has been widely re-

ported as one of the best choices [5]. In PF, the state distribu-

tion is approximated by particles {x(n), n = 1, . . . , N} and

their associated weights w(n). Different methods have been

proposed to update current weights based on previous wights

and available measurements. However, the most popular one

is sampling-importance-resampling (SIR) method. In SIR the

weights are easily updated as [5]

w
(n)
k = w

(n)
k−1p(yk|x(n)

k ) (5)

If the added noise vk be GWN, p(yk|x(n)
k ) is equivalent to a

zero mean Gaussian distribution with covariance matrix Qv .

2.2. Dipole source localization formulation in state space

Suppose the measured multichannel EEG signals yk from M
sensors at time k are produced by q dipoles, so we can model

yk as

yk =
q∑

i=1

F(ρk(i))mk(i) + vk (6)

where ρk(i) is a three dimensional location vector and mk(i)
is a three dimensional moment vector of the ith dipole. We

assume the number of dipoles is known a priori and we are

interested in estimation of their locations. Hence, our states

are defined as

Lk = [ρk(1) . . . ρk(q)] . (7)

By introducing an M × 3q matrix of location F(Lk) and

a 3q × 1 vector of moments mk as

F(Lk) = [F(ρ1) . . . F(ρq)]

mk = [mT
k (1) . . . mT

k (q)]T

where [.]T indicates transpose operation, equation (6) can be

reformulated in matrix form as

yk = F(Lk)mk + vk (8)

Here F is a nonlinear function of q dipoles. Thus, using equa-

tion (1), the state space formulations (3 and 4) have the fol-

lowing forms

Lk = Lk−1 + wk−1 (9)

yk = F(Lk)mk + vk (10)

In the above equation, we still need to know the moments

vector mk to estimate Lk using PF. Fortunately, mk has a

linear relation with he measured EEG data, and assuming that

the moment vector mk is a noiseless process, it can be opti-

mally estimated in each step as

mk = F†(Lk−1)yk (11)

where F†(Lk−1) is the pseudo-inverse of F(Lk−1) and is

given by

F† = (FT F)−1FT (12)

Note that in equation (11), mk is estimated from the loca-

tion matrix Lk−1 at previous step and measurements yk at

the current step. The proposed method is a grid based method

meaning that the brain is divided into sufficiently small three

dimensional grid cells and each dipole’s location is restricted

to one of these cells. Therefore, after the prediction stage,

the locations indicated by each particle may not be one of the

grid cells and they need to be replaced with the nearest cells’

locations (see Algorithm 1).

2.3. Linear optimum beamforming

Consider all of the signals coming from the grid cells {gi|i =
1, . . . , G} out of which q of them are the sources of interest

ρ̆ = {ρ(i)|i = 1, . . . , q}, and suppose the recorded EEG can

be decomposed as

yk =
G∑

i=1

F(gi)mk(i). (13)

We are looking for a linear spatial filter Wρ̆ which passes

signals coming from ρ̆ and suppresses the rest. Therefore, the

filter Wρ̆ should have the following ideal response

WT
ρ̆ y =

G∑
i=1

WT
ρ̆ F(gi)mk(i) =

q∑
i=1

F(ρk(i))mk(i) (14)

Equation (14) results in

WT
ρ̆ F(gi) =

{
F(gi) gi ∈ ρ̆

O gi �∈ ρ̆
(15)

where O is a 3×M null matrix. Equation (15) can be formu-

lated in a matrix form as

WT
ρ̆ F = FO (16)

where F =
[

F(g1) . . . F(gG)
]

is the matrix of all

gains and FO =
[

O . . . F(ρ(1)) . . . F(ρ(q)) . . . O
]

has zero entries except in the locations of interest. The opti-

mum solution to the linear equation (16) is

Wρ̆ = FT†FT
O (17)

In the above equation, the pseudo-inverse of FT is computed

instead of pseudo-inverse of F. This requires computing the

inverse of a lower dimension matrix (see equation (12)). By
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applying this filter to the measured EEG we will have a data

which suffers from less spatial noises.

This filter, in contrast to other filters such as LCMV, is

a data independent filter and there is no need for the second

order statistics of the signals. Therefore, it can be applied to

the stationary as well as non-stationary signals.

2.4. Beamforming particle filter

The idea of BPF is to use the spatially filtered data instead

of the original measurements to compute the moment vector

mk. Therefore, by applying the obtained filter from equation

(17) to the measurements, equation (11) is converted to

mk = F†(Lk−1)WT
ρ̆ yk (18)

The matrix FO in equation (17) is constructed for each parti-

cle using locations indicated by particles from previous step.

Moreover, since matrix F is the matrix of all gains and is inde-

pendent of the desired locations, for computational efficiency,

its pseudo-inverse can be calculated once before the algorithm

starts. The pseudo-code of this algorithm is presented in Al-
gorithm 1. In this algorithm, N (O,Qv) means a zero mean

Gaussian distribution with covariance matrix Qw.

Algorithm 1 Pseudo-code of BPF

construct FT and calculate its pseudo-inverse FT†.
set k = 0 and generate random integer numbers L

(n)
0 according

to random uniform distributions.
for k = 1 to T do {T is the length of the signals}

- generate random numbers w
(n)
k ∼ N (O,Qw) and set

L
(n)
k = L

(n)
k−1 + w

(n)
k (prediction stage).

- replace L
(n)
k with their nearest grid cell locations.

- construct matrix FO
(n) and calculate W

(n)
ρ̆ = FT†FT (n)

O .

- calculate moments vector m
(n)
k = F†(Lk−1)W

T
ρ̆ y

(n)
k .

- update new weights w
(n)
k = w

(n)
k−1p(yk|L̃k

(n)
).

- normalize the weights w
(n)
k = w

(n)
k /

∑N
n=1 w

(n)
k .

- resample new N particles L
(n)
k from the L̃

(n)
k with replace-

ment according to the importance weights w
(n)
k [5].

end for

3. NUMERICAL RESULTS

In this section, a comparison between the BPF, PF, and beam-

forming approaches is given. A three shell realistic geome-

try inhomogeneous head model was used. The methods were

applied on a discrete cubic grid with 413 grid cells. A 25-

electrode configuration was used and the electrodes were as-

sumed to have a homogeneous distribution over the hemi-

spheres according to the standard 10-20 system.

In the first simulation, one stationary dipole located in the

superficial region of the brain is considered. The moments in
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Fig. 1. An example of simulated data, (a) dipole’s moment in x, y and z
directions, (b) simulated noiseless EEG, (c) simulated noisy EEG with SNR

= -5db.
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Fig. 2. Output error of three different methods in different values of SNR.

x, y and z directions are assumed to be a sinusoidal, a con-

stant, and a Gaussian function of time, respectively. An ex-

ample of moments, noiseless and noisy simulated EEG with

SNR -5dB are shown in Fig. 1. In both PF and BPF ap-

proaches,all the noise covariance matrices Qw and Qv are

simply assumed to be in the forms of σwI and σvI and same

number of particles was used for both PF and BPF.

Fig. 2 shows the error of the estimated dipole’s location

in different signal-to-noise-ratio (SNR) values. The error is

defined as the 3D geometrical distance between the estimated

and simulated locations in meter unit. BPF and PF approaches

exhibit extremely better performance than the beamforming

which is very sensitive to SNR. BPF outperforms PF method

and exhibit more robustness to noise. It is noteworthy that the

results may change with the number and depth of dipoles as

well as the correlation and distance between the dipoles. The

results demonstrate the potential use of PF and BPF methods

for EEG with very low SNR.

Fig. 3 presents an example for when the assumption on

the number of dipoles q is violated. In this example, two

dipoles, one in superficial region of right hemisphere and one

in the left hemisphere, are used to simulate the data. The first

dipole has stronger moment’s power than the second one and

their locations are shown with blue circles in Fig. 3. We as-

sumed one dipole is responsible for the simulated data and

then the above three methods were applied. The result of lo-
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Fig. 3. Estimating the location of two dipoles with one dipole, the original

two locations are shown with circle and estimated locations using BPF, PF

and beamforming are dentated by asterisk, square and diamond, respectively,

(a) axial view, (b) coronal view.

calization using BPF, PF, and beamforming are presented in

Fig. 3 by asterisk, square and diamond, respectively, in ax-

ial and coronal views. BPF located the first dipole very close

to the strongest dipole and PF located the dipole between the

two dipoles but closer to the stronger one. On the other hand,

beamforming located the dipole between the two dipoles with

no regard to the stronger dipole. This example shows that if

the assumed number of dipoles q is less than the number of

existing dipoles, then the BPF method reveals the strongest

dipoles and the PF finds the locations for those that minimize

the error between the constructed data and the original mea-

surements. From physiological point of view, therefore the

performance of BPF may be more acceptable.

4. AN EXPERIMENTAL RESULT

EEG data were recorded in electrophysiology laboratory of

Cardiff university. The sampling frequency was set to 200Hz

and a linear filter with a bandwidth between 0.03 and 40Hz

was applied. A 0.15sec pre-stimulus interval was used for

baseline correction. Event related potentials (ERPs) are ac-

quired in the test phase of a memory experiment. In the test

phase, the participants were asked to respond on one key to

words encountered in a prior study phase (studied words).

The number of studied words was set to 70.
Fig. 4(a) shows the average of ERPs over trials elicited in

correct responses to the studied words. The shown ERPs are
the superposition of 25 sensors for one subject. The first peak
is considered as an exogenous ERP which is related to the vi-
sual process of the brain and the second peak is a cognitive
related ERP. Fig. 4(b) is the averaged re-referenced and nor-
malized data which is used for processing. Figs. 4(c) and (d)
present the results of localization for the first peak in coronal
and axial views. The estimated location of the first peak using
beamforming, PF and BPF are denoted by square, circle and
asterisk, respectively. The location of the first peak which is a
visual process is in the primary visual cortex and is located in
the back of the brain (parietal site). Both images illustrate that
the location obtained by the BPF method is in the parietal site
near the primary visual cortex. The location obtained by the

PF is more accurate than that obtained by the beamforming in coro-

nal view and the location obtained by the beamforming is more accu-

rate than that from the PF in axial view. In this memory experiment,

multiple sources are activated and we expect that the BPF to show

the location of the strongest sources and the PF method to show the

weighted average of all source locations. Thus, in this experiment,

BPF approach outperformed PF and beamforming techniques.

5. CONCLUSION

In this study, a method for localizing EEG sources based on beam-

forming and PF was presented. We demonstrated the accuracy of the

method for the simulated data along with the real data. The observa-

tions proved accurate performance of PF and BPF over beamform-

ing approach. Moreover, BPF not only outperforms PF in different

values of SNR, but also if the assumed number of dipoles is vio-

lated, BPF has a better performance. The BPF and PF, with the same

formulation, can also be applied to magnetoencephalogram (MEG)

data.

−0.2 0 0.2 0.4 0.6
−10

0

10

20

Time [sec]

A
m

pl
itu

de
 [µ

V
]

−0.2 0 0.2 0.4 0.6
−1

−0.5

0

0.5

1

Time [sec]

A
m

pl
itu

de
 [µ

V
]

(a) (b)

y [m]

x 
[m

]

−0.1 −0.05 0 0.05 0.1

−0.1

−0.05

0

0.05

0.1

y [m]

z 
[m

]

−0.1 −0.05 0 0.05 0.1

−0.1

−0.05

0

0.05

0.1

(c) (d)

Fig. 4. An example of applying three methods on real data, (a) superpo-

sition of average of ERPs in one subject for 25 electrodes, (b) averageed re-

referenced normalized ERPs, (c) estimated locations in axial view using BPF,

PF and beamforming denoted by asterisk, square and diamond, respectively,

(d) same results in coronal view.
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