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ABSTRACT

 
A method that automatically estimates the metrical structure of a 
piece of music is presented. The approach is based on the 
generation of a beat similarity matrix, which provides information 
about the similarity between any two beats of a piece of music. 
The repetitive structure of most music is exploited by processing 
the beat similarity matrix in order to identify similar patterns of 
beats in different parts of a piece. This principle proves to be 
equally effective for the detection of both duple and triple meters 
as well as complex meters. The use of beat positions and dynamic 
programming techniques allows tracking similar musical patterns 
formed by beats with moderate tempo deviations. The robustness 
of the presented approach is reflected by the results presented, 
where 361 songs are used in order to compare the presented 
approach against the use of the autocorrelation function in existing 
state of the art meter detection methods. 

Index Terms— rhythm description, meter detection, 
similarity measures, dynamic programming 

1. INTRODUCTION

The analysis of rhythm is a crucial step in the description and 
understanding of a musical piece. Rhythm is characterised by 
patterns of musical units that occur at different hierarchical 
rhythmic levels. The basic rhythmic units are called beats and the 
rate of repetition of these beats provides the tempo. The patterns 
by which the beats are grouped provide the meter of a piece of 
music. As an example, a song in which beats are grouped in pairs, 
"one, two, one two, one two..." is denoted as having a duple meter. 
The subdivision of the beat into two or three rhythmic units 
provides the meter type of the song, where a simple and compound 
meter corresponds to a division of the beat into 2 or 3 rhythmic 
units respectively. Finally, the time signature combines 
information of both meter and meter type together.  

There are numerous algorithms that perform tempo extraction 
or beat tracking [1, 2]. However, the automatic detection of the 
time signature or the metrical structure of a piece of music remains 
a relatively unexplored area [3]. In [4-6] the meter is calculated by 
tracking the peak in a periodicity function, such as the 
autocorrelation function, which corresponds to the periodicity of 
the bar line; [4] extracts the most prominent peak in the periodicity 
function, [5] investigates all peak pairs for possible beat/bar 
combinations and [6] tracks the periodicity of peaks corresponding 
to a duple or triple meter. In [7], the meter is classified by using a  
discrimimant analysis of the autocorrelation function of onset 
detection functions weighted by different accent types. However, 
the material used was limited to MIDI format. In [8], Gouyon 
estimates a song’s meter (duple or triple) by tracking periodicities 

of low level features around a beat segment. In [9], Klapuri 
estimates the position of three different hierarchical metrical units, 
(tatum, beat and bar), by using a probabilistic method based on 
musical knowledge. However, the purpose of the method is not the 
estimation of the global meter of the song. In [10], an audio 
similarity matrix (ASM) [11, 12] is used in order to track 
similarities in the audio signal between instants separated by beat 
and bar duration. Thus, the method assumes that successive notes 
and bars have similar characteristics. However, existing methods 
discard similarities between bars located at different points in the 
music, which is generally the case in music styles such as 
traditional Irish music and popular music, where verses and 
choruses repeat at different parts of the song. This limitation is 
addressed in [13], where a method based on the use of different 
ASMs seeks repetitions in any two possible musical bars of the 
musical piece. However, this method has some limitations inherent 
to the use of ASMs; similar patterns of beats with slight tempo 
deviations will degrade the similarity measure calculation. In 
addition, the computational requirements required to generate the 
ASMs are very expensive. These limitations are addressed by the 
method presented in this paper, which uses beat positions in order 
to compute a beat similarity matrix. This representation provides 
information of the similarity between any two beats, as opposed to 
the similarities between any two time instants. In addition, tempo 
deviation problems are addressed by the use of dynamic 
programming techniques to calculate the beat similarity matrix.  

The organization of the paper is as follows; Section 2 
describes the different components that comprise the meter 
detection approach. In Section 3, evaluation results of the meter 
detection algorithm are introduced, which includes comparisons 
with state of the art methods. Finally, a discussion of the results 
obtained and some future work are presented in Section 4. 
 

2. PROPOSED SYSTEM 
 
The different parts of the meter detection system are depicted in 
Figure 1. Firstly, a spectrogram of the audio signal is generated. 
Following this, individual audio similarity matrices are computed 
by comparing the spectrogram frames of every two beats of the 
piece of music. Next, a beat similarity matrix is built by using 
similarity measures derived from the individual audio similarity 
matrices. Finally, the existence of similar patterns of beats is 
investigated by processing the diagonals of the beat similarity 
matrix. 

 
Figure 1: meter detection system block diagram
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2.1. Spectrogram generation 
A spectrogram is generated from windowed frames of length L= 
1024 samples and a hop size H=512 samples, which is equal to 
half of the frame length. 
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where w(n) is a Hanning window that selects an L length block 
from the input signal x(n), and where m, N and k are the frame 
index, FFT length and bin number respectively.  

In order to improve the computational efficiency of the 
algorithm, only frequency bins of the spectrogram in the range k  
{1…S} are maintained, where S corresponds to the bin located at 
5000 Hz.  

2.2. Beat tracking 
A beat tracking algorithm based on [5] and [2] is used in order to 
automatically estimate the time instants at which the musical beats 
occur. As in [5], a complex based onset detector and a periodicity 
detection method that combines an autocorrelation function with a 
comb filter are used in order to obtain the beat period . Then,  
dynamic programming is used in order to estimate the sequence of 
beat locations in the onset detection function separated by  [2]. 
The position of the beats is then used in order to compare every 
two pairs of beats by using corresponding spectrogram frames.  

2.3 ASM of every two beats 
An individual ASM is built by comparing spectrogram frames of 
every two beats. In order to improve the efficiency of the 
algorithm, only frames separated by less than T frames are 
computed, where T corresponds to 8% of the beat duration. Thus, a 
frame j of beat x will only be compared with frames [j-T,…,j+T] of 
beat y. There are several techniques that measure the similarity 
between two frames m=a and m=b. In [13], the ASM is computed 
by the using the Euclidian Distance Measure (EDM) as follows: 
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In order to remove the dependence on magnitude, the cosine 
distance measure is used in [10], which is given by: 
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Another widely used technique to compute vector similarities is 
the Kullback-Leibler (K-L) divergence method [14]: 
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In Figure 2, the spectrogram frames of 2 beats x and y are utilised 
in order to generate an ASM by using the EDM. As it can be seen 
in Figure 2, the ASM shows frame similarities within a certain 
tempo range, where dark blue denotes high similarity. 
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Figure 2: ASM of beat x and beat y

Following this, dynamic programming is used in order to obtain 
the best path between the top left and the bottom right corners of 
the ASM which minimises the total similarity cost.  Dynamic 
programming techniques have been used in a large variety of 
domains, including MIR systems, DNA analysis or automated 
spelling checking. The principle involves solving a large problem 
by regarding the problem as the sum of the solution to its 
recursively solved small problems [15]. In order to find the best 
path though the ASM of two beats x and y with lengths lx and ly
frames respectively, a transition matrix M is generated. Thus, Mi,j

represents the minimum cost needed to get to the position [i,j] of 
the ASM from the top left of the matrix: 

),,min( 1,,11,1,, jijijijiji MMMASMM  (5) 

The similarity between a pair of beats x and y is given by S = Mlx,ly. 
As an example, the best path which minimises the total similarity 
cost of the ASM shown in Figure 2 is depicted in the same figure. 
Even though, both compared beats comprise similar note structure, 
they do not have similar durations, which is due to tempo 
differences between two renditions of the same beat locations. In 
addition, the position of one beat was estimated by the beat tracker 
delayed from its “real” beat time, which complicates the alignment 
of similar frames of the two beats. As illustraded in Figure 2, these 
difficulties are overcome by the dynamic programming based 
method, where the similarities between the notes of both beats 
were tracked. 
 

Beat number

B
ea

t n
um

be
r

10 20 30 40 50 60 70 80

10

20

30

40

50

60

70

80

 
Figure 3: BSM of “Ageispolis” by “Aphex Twin” 
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2.4. Beat Similarity Matrix (BSM) 
The similarity measure S between any pair of beats of a piece of 
music will be utilised to recursively build a Beat Similarity Matrix. 
Thus, BSM(x,y) will correspond to the similarity between two 
beats x and y. As an example, Figure 3 depicts the BSM of a song 
played in quadruple meter, where the similarities of every two 
beats are shown. In order to reduce the computational 
requirements, only one half of the BSM is generated. 
 
2.5 Diagonal processing and meter type calculation 
The existence of similar metrical structures in the piece of music is 
investigated by processing the diagonals of the BSM. Each 
diagonal represents the similarity between beats separated by a 
different number of beats. This similarity is measured by 
calculating the mean of the components of each diagonal of the 
BSM. Then, the resulting function is inverted in order to build a 
function d that shows peaks at diagonals in which components 
exhibit maximal similarity: 
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where diag(BSMi) corresponds to the diagonal i of BSM. 
In order to resolve ambiguous cases, where similarities in d are not 
easily discernible, peaks in d are given additional 1.5 weighting. 
An example of the calculation of d is shown in Figure 4, which is 
generated by processing the diagonals of the BSM depicted in 
Figure 3. It can be derived from Figure 4 that the method finds 
high similarity in musical bars separated by multiples of 8 beats. 
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Figure 4: d function of Figure 3’s example

A large range of meter candidates is considered in the presented 
meter detection approach. This includes duple and triple meters, 
which are denoted as c=2 and c=3, common multiples of duple and 
triple meters, denoted as c=4, 6, and 8 as well as complex meters, 
denoted as c=5, 7, 9 and 11. In order to consider multiples of each 
meter candidate c, which corresponds to similar beat patterns 
located at different musical bars, a weighted comb filter is applied 
to the function d.  This resulting function, denoted as Tc, gives 
more weight to closely separated musical bars as follows: 
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where lt corresponds to nb/11  and nb corresponds to the number 
of beats of the piece of music. 

The Tc of  Figure 3’s example is shown in Figure 5 for all the 
range of meter candidates. The function shows a distinctive peak at 

the meter candidate c=8, which corresponds to the grouping of 8 
beats per musical bar. 
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Figure 5: meter detection result example 

3. RESULTS 

In order to evaluate the performance of the presented approach, a 
comparative analysis against the standard autocorrelation based 
meter detection method used in [4-6] is performed. A fair 
comparison between approaches is ensured by using the same 
autocorrelation function utilised by the beat tracker introduced in 
section 2.2, which is denoted as F. Thus, the same beat period   
used by the beat tracker is also used by the autocorrelation 
function F to calculate the meter for all candidates in the range c. 
In order to allow deviations in F from perfect multiples of , a 
maximum in F within a region will be used as meter prominence 
for each meter candidate: 

) ]2*,...,2*[ max( ccFACFc   (8) 
where max(E) corresponds to the maximum value of a region E 

The presented approach is evaluated by using the 3 different 
similarity measures of Equations 2 to 4. Since humans perceive 
rhythm at different rates and the automatic detection of the beat 
period  is prone to both half and double errors, meters c=2 and 
c=8 in both the song databases and in the results provided by the 
compared approaches were set to c=4. The same principle applies 
to meter c=6, which was set to c=3. Firstly, the meter detection 
methods are evaluated by using a database of duple and triple 
meters. Next, a database of solely triple meters is used. Finally, a 
database of complex meters is used. 
 
o Db1: Database of [9] (mainly quadruple meters) 
In [9], a database of 320 manually annotated musical bar and beats 
is used. The same database of songs is used in the presented 
evaluation as follows; the meter of each song in the database is 
annotated by dividing the median of the difference of the bar 
annotations by the median of the difference of the beat 
annotations. Ambiguous results were double checked by the 
paper’s author and the resulting annotations were rounded. The 
distribution of meters in Db1 is 314 of songs in duple or quadruple 
meter and the remaining 6 songs in triple meter. The percentage of 
good detections is shown in Table 1, where EDM, CD and KL 
denote the use of Euclidian Distance, cosine distance and 
Kullback-Leibler distance measures respectively in the presented 
approach and ACFc denote the use of the autocorrelation function. 

ACFc EDM CD KL
95. 07% 94.68 % 95.65 % 88.12 % 

Table 1: Percentage of good meter detections for Db1 
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o Db2: Database of triple meters 
In order to investigate the robustness of the algorithms in 
estimating triple meters, a new database comprised by the 6 songs 
in [8] played in triple meter and additional 20 songs in triple meter 
was built. The results are shown in Table 2, where as in Table 1 
the results do not greatly differ between the compared methods. 

ACFc EDM CD KL
73.08% 76.92 % 76.92 % 76.92 % 

Table 2: Percentage of good meter detections for Db2 

o Db3: Database of complex meters
A database of 21 complex meters was also used in order to 
evaluate the approaches with songs having different metrical 
patterns. This includes songs played in 5, 7, 9 and 11 beat meters. 
The results are shown on Table 3, where it can be seen that the 
presented approach provides significantly better results than the 
ACFc for the three similarity measures. 

ACFc EDM CD KL
44.12% 70.59% 67.65% 70.59% 

Table 3: Percentage of good meter detections for Db3 

4. CONCLUSIONS 

A system that detects the meter of a piece of music has been 
presented. The system has been evaluated by using three different 
similarity measures in the generation of the ASM, for three 
different databases and compared against the standard 
autocorrelation based meter detection method. By considering Db1 
and Db2, the results provided by the ACF and the presented 
approach do not significantly vary in the detection of duple and 
triple meters. However, the ACFc had difficulties to track complex 
meters, which are commonly formed by combining duple and 
triple meters together. As an example, the autocorrelation function 
of “Superconductor“ by Rush is depicted in Figure 6.  This song is 
played in septuple meter, which can be seen as a “3+4” meter. As 
it can be seen in the figure, the duple periodicity and its related 
multiples are more prominent in the autocorrelation function than 
the 7 beats periodicity. Since the presented approach is purely 
based on similarity, the similarity of bars in the piece of music will 
be accurately tracked regardless of the metrical structure of the 
beats of the bars. This is illustrated in Figure 6, where the meter 
detection of “Superconductor“ by “Rush” is shown for all the 
range of meter candidates.  

The EDM proved to be the most consistent of the three 
similarity measures across the three different databases. The 
development of a system that combines the autocorrelation 
function with the presented approach should warrant future work. 
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Figure 6: autocorrelation func. (left plot) and Tc meter 
detection (right plot) of “Superconductor” by “Rush”   
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