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ABSTRACT

This paper introduces scale transforms to measure rhythmic simi-
larity between two musical pieces. The rhythm of a piece of music
is described by the scale transform magnitude, computed by trans-
forming the sample autocorrelation of its onset strength signal to the
scale domain. Then, two pieces can be compared without the im-
pact of tempo differences by using simple distances between these
descriptors like the cosine distance. A widely used dance music
dataset has been chosen for proof of concept. On this data set, the
proposed method based on scale transform achieves classification
results as high as other state of the art approaches. On a second
data set, which is characterized by much larger intra-class tempo
variance, the scale transform based measure improves classification
compared to previously presented measures by 41%.

Index Terms— Rhythm, similarity, music, information retrieval

1. INTRODUCTION

The detection of rhythmic similarity of musical pieces plays an im-
portant role in many applications. In many of these applications sim-
ilar pieces can be expected to differ widely regarding their tempi. In
traditional forms of music, performances of the same style of dance
can have very different tempi [1]. Because of that, automatic clas-
sification of traditional dances has to be robust to tempo variability.
A second example: Composers often search large databases for ac-
companiments that fit to a chosen drum sample, where the tempo
could be adjusted to the drum if an accompaniment is found satisfy-
ing. Thus, retrieval of rhythmically similar samples without impact
of their tempo differences is desirable.
Previous approaches for measuring rhythmic similarity usually lack
the robustness to tempo changes. For example, in [2] a cosine mea-
sure between beat spectra is used to measure rhythmic distances.
These beat spectra are computed using self similarity between the
Fourier transform at different time lags. This measure is shown to
work well within a narrow range of tempo variation only. Other
approaches make the estimation of tempo necessary, as for exam-
ple in [3], or demand the estimation of meter organization like in
[4], where the tactus is estimated and rhythmic patterns are extracted
from the time signal. The patterns are then warped for comparison.
The estimation of tempo or meter organization can be considered to
be error-prone especially for signals without strong percussive con-
tent, as shown in [5].
The difficulty of estimating meter structure or tempo from a piece
imposes the usage of descriptors that do not consider the order and
positioning of sound events. Such an approach has been presented
in [2] by using beat spectra. To improve the robustness to tempo
changes when using such descriptors, in [6] periodicity spectra have

been computed from onset strength signals [7] and have been used
in a method referred to as Dynamic Periodicity Warping (DPW).
There, a matrix of point wise distances between periodicity spectra
is computed, and a minimum cost warping path through this matrix
is found. This path is compared to an ideal warping path to get a
distance measure. In [8], warping with different kind of step crite-
ria than in [6] is applied to periodicity representations derived from
self similarity measures; thereafter simply the cost of the warping is
taken as distance.
In this paper, an approach based on scale transforms [9] is shown to
further improve results. From a music signal an onset strength signal
is derived similar to [7]. This onset strength signal has high values at
moments of large positive changes in the STFT magnitude spectrum
of the signal. The sample autocorrelation is then computed from the
onset strength signal. It is important to point out that given the same
piece of music performed at two different tempi the two sample au-
tocorrelation vectors derived from the onset strength signals mainly
differ by a scaling factor. Thus, their scale transform magnitudes
(STM) will be very similar [10]. We show that using simple point-
wise distance measures (i.e. cosine distance) between the STM’s
the robustness to tempo differences of rhythmic similarity detection
is considerably improved. Moreover, the suggested method is much
faster than the method suggested in [6]. To our best knowledge, scale
transforms have been applied to music signals only for digital audio
effects [10].
Two datasets are used for evaluation: The first dataset, D1, has been
used in the ISMIR Rhythm Description contest1 and contains eight
classes of ballroom dances. This dataset has also been used in [11].
The second dataset, D2, consists of six different traditional dances
commonly encountered in the island of Crete (Greece). This data
set is an extension of the data set presented in [6]. Two differences
between D1 and D2 are related to instrumentation and tempo: D2
contains almost only string instruments without percussion, which
makes the automatic meter analysis a very difficult task as shown
in [12]. Furthermore, D2 has a much higher intra-class tempo vari-
ability than D1. The validity of the proposed method will be judged
based on the classification accuracies on the two data sets using a
modified kNN classifier.
The next Section will give a short outline of the scale transform and
its characteristics. Section 3 explains the computation of the STM’s
from audio signals. Section 4 overviews the distance measures that
are going to be compared in this paper. Section 5 describes the
datasets, pointing out the characteristics of D2. Section 6 gives the
classification results for both data sets. Section 7 concludes the pa-
per.

1http://www.iua.upf.es/mtg/ismir2004/contest/rhythmContest/
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2. SCALE TRANSFORM

As a special case of the Mellin transform, the scale transform has
been introduced by Cohen in [9]. This transform is scale-invariant,
which means that the magnitude distributions of the scale transform
of the signals x(t) and

√
ax(at) are equal, for a being some number

bigger than zero. The scale transform is defined as

X(c) =
1

2π

Z ∞

0

x(t)e(−jc−1/2) ln tdt (1)

and as depicted in [10], changes in scale of a signal change only the
phase of the scale transform, while the magnitude remains the same.
The computation of the scale transform can be done efficiently by
using its relation to the Fourier transform, which is referred to as
Fast Mellin Transform (FMT). The FMT of x(t) can be computed
as [10]

X(c) =

Z ∞

−∞
x(et)e1/2te−jctdt (2)

which is the Fourier transform of the exponentially warped signal
weighted by an exponential window.

3. SCALE TRANSFORM FEATURE COMPUTATION

The first step in computing scale transform magnitudes (STM) from
an audio sample is the computation of an onset strength signal o(n)
[7]. In the next step, some representation of the salient periodicities
must be found. In [6], STFT of the onset strength signals have been
computed, referred to as periodicity spectra. In Figure 1, a periodic-
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Fig. 1. Periodicity spectra of original (bold) and time scaled (dashed)
drum beat

ity spectrum of a drum beat is shown in bold lines, while the period-
icity spectrum of its time scaled version is depicted in dotted lines.
It is important to note, that the immediate computation of a point
wise distance between these spectra is affected by the time scaling.
To cope with this, a warping of periodicity spectra was suggested
in [6]. In this paper, we suggest the scale transform to address this
problem. A representation of the signal in scale domain is derived
from the sample autocorrelation, computed as

R̂xx(m, w) =

N−m−1X
n=0

o(n + m + wH)o(n + wH) (3)

with N being the number of samples contained in an eight second
window, w being the index of the analysis frame, and H the num-
ber of samples corresponding to half a second. From each of the
autocorrelation frames an FMT is computed as in (2). As the tempo
of sound samples is considered not to vary strongly within their du-
ration, a whole sound sample can be efficiently represented by the
mean of the derived STM’s for sample i, which will be referred to as
Xi(c). In Figure 2, the mean STM’s derived from the sample auto-
correlations of the drum beat examples used in Figure 1 are shown. It
is evident that the two time scaled drum patterns have essentially the
same STM. Thus, scale representations as depicted in Figure 2 can
be compared directly without the necessity of warping. For measur-
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Fig. 2. Scale transform magnitudes of original (bold) and time scaled
(dashed) drum beat

ing the distance between two scale representations Xi(c) and Xj(c)
of songs i and j the cosine distance

dscale = 1 − Xi(c) · Xj(c)

|Xi(c)||Xj(c)| (4)

has been chosen, because it was found superior to Euclidean distance
applied to similar representations in [2] and [6].
Preliminary experiments have been conducted in order to evaluate
the number of scale coefficients to be used for the rhythmic simi-
larity measure. For this, different guitar and drum sound samples
have been changed in tempo by up to 15% in the audio editor au-
dacity, thus forming pairs of an original and a time scaled version.
Then, distance matrices have been computed and it was checked, for
which number of scale coefficients the pairs can be recognized best
from the distance matrices. In general, a number of less than 20 co-
efficients does not result in a meaningful representation. Using more
than 100 coefficients degrades results, because higher scale coeffi-
cients tend to have decreasing amplitudes as can be seen in Figure
2. The number of coefficients to use was set to 40. This number of
coefficients will be used throughout the following Sections.
The parameters of the onset strength signal computation had to be
changed compared to the parameters proposed by Dan Ellis for the
following reason: Ellis proposes a hop size of 4ms, which results in
an onset strength signal with a sampling frequency fons of 250Hz.
This means that the first k = 1 : 12 coefficients of the autocorre-
lation are related to periodicities of 250Hz/k. These frequencies
are much higher compared to the frequency range that is significant
for the rhythmic properties of a sample (below 20 Hz). Because of
that, fons was set to 50Hz, resulting in only two coefficients related
to periodicities larger than 20Hz, while maintaining sufficient time
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accuracy of the Fourier transform applied in the computation of the
onset strength signal o(n). This change is important, because scale
transform is sensitive to the content of the first values of its input and
a misalignment caused by signal properties unrelated to rhythm may
corrupt the results.

4. DISTANCE MEASURES

Starting from an onset strength signal sampled at fons the corre-
sponding autocorrelation vectors and periodicity spectra are com-
puted as representations of the salient periodicities in the signal.
They are computed using the same window sizes and hop sizes: eight
second rectangular windows with a half second shift, as explained in
Section 3. As mentioned in the introduction, a direct comparison of
periodicity spectra or sample autocorrelation vectors will be prob-
lematic between rhythmically similar pieces with different tempi. In
order to shed light on this problem, the mean of periodicity spectra,
P̄ i

x(f), and the mean autocorrelation function, R̄i
xx, of song i are

computed. Then, the corresponding cosine distances, dcos(P ) and
dcos(R), are used to compare a pair of these representations. Note
that the cosine measure has been shown to be optimal in the ab-
sence of large tempo variation in [2]. To improve the robustness in
presence of tempo changes, the similarity measure dDPW based on
Dynamic Periodicity Warping (DPW) is also computed as described
in [6].
The aforementioned measures will be compared with the method
proposed in this paper: The cosine distance dscale using the scale
representations, as denoted in (4).

5. DATA SETS

The first data set, D1, used in this paper has been used in [3, 11, 13],
among others. It contains 698 songs from eight different styles of
ballroom dances. This data set appears to be easy, because dances
vary little in tempo within one class, and classes can be widely dis-
tinguished only by using tempo information [13]. In [3], accuracies
of about 78% are reported when using the hand annotated bpm val-
ues as features for classification.
This is very different for the second data set, D2. It contains short
excerpts of six dances commonly encountered in the island of Crete:
Kalamatianos, Siganos, Maleviziotis, (fast) Pentozalis, Sousta and
Syrtos. In Figure 3, the tempo annotations conducted by the authors
have been modelled by Gaussians. The rate of fourth notes has been
taken as tempo. It can be seen that the variations of tempi within one
class are larger than for the ballroom data (compare with Figure 1 in
[13]), and that there are large overlaps between their tempo distribu-
tions. When considering that the dance Syrtos is often transcribed in
notes of double length, this overlap gets even larger with the tempo
distribution of Syrtos moving from the left part of the Figure to the
right, creating a distribution overlapping with all dances except of
Siganos. These overlaps in tempo make D2 appear a more diffi-
cult data set than the collection of Greek music used in [8], where
the four classes do not overlap. Furthermore, all traditional Cretan
dances have a 2

4
meter, only Kalamatianos as a dance originating

from a different part of Greece has a 7
8

meter. This makes the sepa-
ration by considering their meter impossible as well. Also, most of
the pieces contain only two kinds of string instruments, while per-
cussive instruments are not contained in most samples, creating a
very homogeneous data set considering instrumental timbre. Thus,
it can be concluded that a distance metric for D2 has to be robust
to tempo changes and cannot rely on tempo or meter characteristics.

It has to be able to detect periodicities that are characteristic for the
rhythmic pattern of the specific kind of dance. Preliminary listening
tests on a randomly chosen subset of D2 which contained 90 songs,
support the assumption of the difficulty of the task: Even though all
six subjects were able to dance each of the six dances, they labeled
only about 76% of the samples correctly.
As detailed in [6], the length of the samples guarantees that they
contain at least two repetitions of the music segments characteristic
for the dance. Thus, they should be sufficient both for human listen-
ers and for a computational approach, to detect present similarities
in their rhythm. Recently, the research presented in [14] shed light
on the difficulty of understanding music structured as the samples
in D2: it is following a different kind of morphology, the logic of
parataxis [14], and a successful method to compute rhythmic sim-
ilarities in this type of music can provide a useful tool for compu-
tational ethnomusicology [15]. Data set D2 will be accessible for
interested researchers on request.
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Fig. 3. Tempi of dances in D2, modelled by Gaussian distributions

6. EXPERIMENTS

The accuracies of a modified k-Nearest Neighbor (kNN) classifi-
cation have been determined by running ten repetitions of a 10-fold
cross validation. As shown in [6], a locally weighted kNN was found
to improve accuracies on similar data, and therefore it has been used
in the experiments. It assigns weight wi = 1 − (di/dk+1) to the
i-th training sample, where dk+1 is the distance of the k + 1-nearest
neighbor to the test sample. Thus, training samples more far away
from the test sample, contribute less to its classification.

Table 1. Classification Accuracies on D1
dcos(P ) dcos(R) dDPW dscale

D1 86.9 86.2 84.0 85.1

D2 55.0 44.5 61.7 77.4

Table 1 shows the classification accuracies on the two datasets,
using the measures as described in Section 4. Similar to the results
presented in [6], there is a slight advantage of the cosine measures
dcos(P ) and dcos(R) on D1. However, compared to the highest
accuracy without the usage of the tempo annotations of 85.7% pre-
sented in [11] on this data set, the accuracy presented here using
dscale is only slightly worse while the best accuracy of 86.9% is
better. The improvement of dcos(P ) in comparison to [6] must be
assigned to the changed sample rate of the onset strength signal
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which in general improved results throughout the experiments. The
good performance of the cosine measure can be assigned to the
small range of intra-class tempo variation [2]. Summing up, the
high classification accuracy using dscale for D1 confirm the validity
of the proposed scale transform based distance measure.
On D2, Table 1 shows a considerable advantage for the proposed
scale distance measure dscale: on this data set it outperforms the
cosine measures by 40.7%/73.9%. This clear improvement can be
assigned to the robustness to tempo changes of the distance measure.
The scale distance measure also improves compared to the previous
presented dDPW [6]. Another advantage is related to computational
load: While in DPW there is the need to compute a warping path
using dynamic programming, the most time consuming operation in
the scale distance measure is the FFT.
In Table 2 a confusion matrix of the experiment resulting in the best
score of the scale distance dscale (77.4%) on D1 is shown. The row
denotes the correct class and the column the assignment by the clas-
sifier. The only two classes that are confused often are the dances
Maleviziotis and the dance fast Pentozalis. This has been observed
to be the most difficult distinction in our listening tests as well.
Both dances have a similar range of tempo and are characterized
by a similar style of dancing. The other dances are classified more
easily; The dances Syrtos and Siganos have the best classification
results. These dances have isolated tempo distributions and can also
be easily recognized by their scale representations.

Table 2. Confusion matrix for D2
Kal. Sig. Mal. Pen. Sous. Syrt.

Kal. 232 0 0 14 32 22

Sig. 0 289 0 0 11 0

Mal. 0 0 206 83 1 10

Pen. 4 10 79 171 16 20

Sous. 11 12 19 12 239 7

Syrt. 11 0 10 10 6 263

As mentioned in Section 3, the number of used scale coefficients
has been set to 40. To confirm the correctness of this choice, the
number of coefficients has been varied on both data sets. The accu-
racies depicted in Table 3 show that there is little change when vary-
ing the number of coefficients in the range between 20 and 100. As
it is expected, using a few coefficients leads to a strong decrease in
accuracy. While the decrease towards higher number of coefficients
appears less strong, this decrease can be assigned to the spurious
peaks in the higher scale bands of the STM’s.

Table 3. Accuracies for different number of scale coefficients
Ncoeff 10 20 40 70 100 200 400

D1 70.1 82.8 85.1 84.0 84.0 83.6 83.6

D2 65.0 77.5 77.4 76.2 73.3 71.8 70.0

7. CONCLUSION

A novel method for rhythmic similarity in presence of large tempo
variations has been introduced. It is based on scale transforms,
which makes it robust to tempo changes while it is not time con-
suming in terms of computational load. By using a data set that is
not separable by using tempo, meter, or other kind of information
(e.g. instrumentation) but the periodicities related to the style of

dance, the validity of the method for similarity of rhythm is demon-
strated. Further research on this subject are the application to music
of other regions, and the usage of the scale respresentations in a
more sophisticated classification framework.
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