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ABSTRACT
We present an algorithm based on probabilistic latent com-

ponent analysis and employ it for relative pitch estimation

of multiple instruments in polyphonic music. A multilayered

positive deconvolution is performed concurrently on mixture

constant-Q transforms to obtain a relative pitch track and tim-

bral signature for each instrument. Initial experimental results

on mixtures of two instruments are quite promising and show

high levels of accuracy.

Index Terms— Pitch estimation, Sound mixtures, Unsu-

pervised learning

1. INTRODUCTION

Pitch estimation of concurrent multiple instruments is an on-

going pursuit in the world of musical signal processing. Al-

though the problem of pitch estimation of a single instru-

ment is for most practical reasons a relatively easy problem to

solve, when confronted with mixtures of instruments, mono-

phonic approaches are ill-equiped to estimate multiple pitch

values. This problem has been attacked using various meth-

ods based on auditory scene analysis [1], auditory models

[2], Bayesian inference and model-based analysis [3, 4], and

also by employing source separation followed by monophonic

pitch estimation on the separated outputs. In this paper, we

propose a different approach to the problem in which we use

an unsupervised method that can elegantly deal with sound

mixtures as well as with monophonic inputs.

Our approach operates on a constant-Q transform represen-

tation, which is decomposed by a deconvolution algorithm de-

signed to find consistent spectral patterns and infer their pitch

by observing their instantaneous shifts along the frequency

axis. In order to make the estimation robust for mixtures, we

use a parameterized model of the shifting process as well as a

Kalman filter type smoothing to enforce temporal continuity

in the extracted pitch tracks.

2. PROPOSED METHOD

In this section, we describe the various computational steps

involved in constructing our approach. In the process, we also
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Fig. 1. Spectrograms and constant-Q transforms. The figure

on the left is a spectrogram of three different notes played

by a saxophone. The spacing between any two harmonics in

the first note is different from the spacing between the two

corresponding harmonics in the other notes. The figure on

the right is a constant-Q transform of the same signal. The

spacing between the harmonics is the same for all of the notes.

In this representation a pitch shift is characterized by just a

vertical shift of the frequency axis.

present some simple examples that justify and highlight the

utility of these steps.

2.1. Constant-Q Transform

The initial representation we use for this method is the

constant-Q transform [5]. The constant-Q transform is a time-

frequency representation with a logarithmically spaced fre-

quency axis. Due to this frequency spacing arrangement,

when analyzing pitched signals, we can see pitch shifts repre-

sented as vertical shifts of roughly the same spectral template.

This is different from a representation like the Fourier decom-

position, which will additionally warp the spectral shape of

an instrument as its pitch changes. This crucial difference

is shown in the following example. In figure 1, we show

a Fourier representation of a musical note in which one can

clearly see its harmonic structure. If we visualize a differ-

ent note of the same instrument, the spacing between the har-

monics change. On the other hand, in a constant-Q trans-

form, notes at different pitches appear as shifted versions of

the same spectral pattern. If the timbral structure of a given in-

strument is fairly consistent in a piece of music, the constant-
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Fig. 2. Illustration of shift invariant PLCA on a recording of

a clarinet. The large top right figure is the constant-Q trans-

form of a clarinet recording. The bottom figure shows the

impulse distribution after applying shift invariant PLCA and

the top left figure shows the corresponding kernel distribu-

tion. Convolving the kernel and the impulse distribution will

approximately reconstruct the input constant-Q transform.

Q transform of the instrument can be seen as a convolution

of the spectral pattern of that instrument with a function that

offsets it appropriately to create the desired pitch effects.

2.2. Shift-Invariant Probabilistic Latent Component
Analysis

Shift-invariant probabilistic latent component analysis

(PLCA) [6] is an algorithm used to extract shifted struc-

ture in multi-dimensional non-negative data. When employed

on a constant-Q transform of a mixture of instruments, it can

be used to decompose the input data into a summation of

convolutions of one spectrum and one pitch track for each

instrument.

More specifically, we denote the spectral signature of the

z-th instrument as a probability distribution we call the ker-

nel distribution PK(τf |z) and we define the pitch track of the

same instrument as a probability distribution we call the im-

pulse distribution PI(f ′, t|z). The constant-Q transform of

the given instrument is therefore the convolution of these two

distributions (figure 2) :

Vft|z = PK(τf |z) ∗ PI(f ′, t|z)

When we have a mixture, we will observe one Vft|z for

each instrument and all of these will be superimposed to con-

struct the constant-Q input at hand. We model their mixing

proportion as one more probability distribution P (z).
The model for the constant-Q transform of the mixture is

therefore:

Vft =
∑

z

P (z)
∑
τf

PK(τf |z)PI(f − τf , t|z)

Since there are latent variables in this model, a variant of

the EM algorithm is employed to estimate the distributions.

The latent variables are τf (or f ′ since f = τf + f ′) which

represents shift and z which represents the mixture weights.

In the expectation step, we estimate the contribution of a

specific location of the impulse distribution (f ’,t) of a given

instrument z, to location (f, t) of the mixture constant-Q

transform:

R(f, t, f ′, z) =
P (z)PI(f ′, t|z)PK(f − f ′|z)∑

z P (z)
∑

f ′ PI(f ′, t|z)PK(f − f ′|z)

In the above equation, the latent variables are f ′ and z.

We can obtain the same value of this function by modeling

the latent variables as τf and z. The E-step equation then

becomes:

R(f, t, τf , z) =
P (z)PI(f − τf , t|z)PK(τf |z)∑

z P (z)
∑

τf
PI(f − τf , t|z)PK(τf |z)

The M-step equations are given by the following update

equations:

P ∗
I (f ′, t|z) =

∑
f VftR(f, t, f ′, z)∑

f ′
∑

t

∑
f VftR(f, t, f ′, z)

P ∗
K(τf |z) =

∑
f

∑
t VftR(f, t, τf , z)∑

τf

∑
f

∑
t VftR(f, t, τf , z)

P ∗(z) =

∑
f ′

∑
t

∑
f VftR(f, t, f ′, z)∑

z

∑
f ′

∑
t

∑
f VftR(f, t, f ′, z)

The above equations are iterated until convergence.

A number of different impulse/kernel distribution decom-

positions can combine to give the same constant-Q transform.

A vertical shift of one distribution towards one direction can

be annulled by a vertical shift of the other distribution towards

the other direction. Due to this uncertainty, we can only ex-

tract a “relative pitch” track as opposed to an absolute pitch

measurement. Of course, with due precessing it is easy to

align that track and obtain the absolute pitch if needed.

Ideally, the impulse distribution at each time step would be

a shifted and scaled delta function. The position of its peak

would then give us the pitch at a given time step. Since there is

some amount of averaging involved in the estimation process,

the impulse distribution is smoother than an impulse at each

time step. If this distribution is unimodal at each time step, we

can just estimate the pitch track as its peak. This is however

not always the case since the estimation is not required to be

well-behaved like that. In order to ensure that each time step

of the impulse distribution is a unimodal distribution with a

clear peak value we employ a sliding-Gaussian Dirichlet prior

distribution as described in the next section.

2.3. Sliding-Gaussian Dirichlet Prior

In order to deal with the potential non-unimodal nature of

the impulse distribution at each time step, we use a “sliding
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Fig. 3. Illustration of the use of the sliding-Gaussian Dirichlet

prior. Impulse distributions without the use of the prior (left)

and with the use of the prior (right). It can be seen that a

harmonic is captured in the impulse distribution when no prior

is used. The distribution becomes unimodal when the prior is

used.

Gaussian” Dirichlet prior distribution. The prior distribution

is used in the estimation of the impulse distribution in the M-

step of each iteration, making this a maximum a posteriori

(MAP) estimation.

We use the prior distribution to impose a prior belief that

the impulse distribution of each instrument is unimodal at

each time step, thus exhibiting a clear peak which we can

interpret as the pitch value at that time. The effect of using

this prior can be seen in figure 3. The hyperparameters of the

Dirichlet prior at each time step therefore form a sampled and

scaled Gaussian.

The hyperparameters are therefore defined as follows:

α(f,′ t|z) = ρ
1√

2πσ2
e−

(f′−μt|z)2

2σ2

where ρ is a parameter that allows us to decide the strength

of the prior.

The prior distribution for the impulse distribution of the z-

th instrument would then be:

P (Λ|z) =
1
β

∏
f ′,t

PI(f ′, t|z)α(f ′,t|z)

where β is a normalizing factor. The M-step equation to

estimate the impulse distribution then becomes:

P ∗
I (f ′, t|z) =

∑
f

(
VftR(f, t, f ′, z) + ρ′ 1√

2πσ2 e−
(f′−μt|z)2

2σ2

)

∑
f ′

∑
t

∑
f

(
VftR(f, t, f ′, z) + ρ′ 1√

2πσ2 e−
(f′−μt|z)2

2σ2

)

where ρ′= ρ
β . It can be seen from the numerator of this

equation that at each time step, we are performing a blend of

the previous (using no prior) unnormalized estimate of the

impulse distribution and a Gaussian. The variance of the

Gaussians σ2, is predetermined. The peak of the previous

unnormalized estimate of the impulse distribution is used as

the mean at each time step.

μt|z = arg max
f ′

∑
f

VftR(f, t, f ′, z)

Fig. 4. Illustration of the effect of impulse distribution

smoothing on multiple instruments. Shift invariant PLCA is

performed on the mixture data that is shown in the top figure.

The two figures in the second row are constant-Q transforms

of the individual instruments that combine to form the mix-

ture. The two figures in the third row show the resulting im-

pulse distributions when temporal smoothing is not used. As

can be seen, both impulse distributions contain elements of

both instruments. The bottom two figures show the resulting

impulse distributions with the use of temporal smoothing.

2.4. Impulse Distribution Smoothing

The goal of our estimation is to obtain a separate relative pitch

track for each instrument. Sometimes however, there is a tem-

porary switch between pitch tracks of different instruments

in a given impulse distribution. We can see that in figure 4,

where a given impulse distribution oscillates between two dif-

ferent instrument pitch tracks. At a given time step, the im-

pulse distribution is predominantly unimodal (with the help of

the prior). However, there are constant oscillations between

pitch tracks as can be seen in the figure.

In order to deal with this issue, we impose a temporal con-

tinuity constraint on each impulse distribution so that large

variations between consecutive time steps are discouraged.

This is done by employing a Kalman filter type smoothing.

This is done by multiplying the impulse distribution at each

time step with a Gaussian whose mean is the peak of the im-

pulse distribution at the previous time step:

P ∗
Ismooth

(f ′, t|z) = P ∗
I (f ′, t|z)

1√
2πσ2

e−
(f′−μ

t′−1|z)
2

2σ2

The variance σ2 is predetermined. Once we obtain

P ∗
Ismooth

(f ′, t|z), we reassign it to P ∗
I (f ′, t|z) and continue

with the next EM iteration.
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Clarinet and Flute μ1 σ1 μ2 σ2

Metric 1 Error (percent) 2.22 7.61 1.06 5.41

Metric 2 Error (bin #) 0.15 0.9 0.21 1.54

Flute and Horn μ1 σ1 μ2 σ2

Metric 1 Error (percent) 4.12 7.48 6.89 15.82

Metric 2 Error (bin #) 0.25 0.83 0.45 3.2

Clarinet and Oboe μ1 σ1 μ2 σ2

Metric 1 Error (percent) 26.91 13.28 10.74 9.69

Metric 2 Error (bin #) 2.58 4.28 1.92 5.85

Table 1. Results. The mean and standard deviation of the

error over each metric is found for each instrument. For a

given error metric, the mean and standard deviation for each

instrument are indicated by their subscripts.

3. RESULTS

Our algorithm has been tested on a recording of a woodwind

quintet 1. We have applied the algorithm to mixtures of clips

of two instruments at a time. Since the EM algorithm does

not always converge to the same solution, we have run the

algorithm for one hundred trials on each of the three data sets

(mixture of two instruments) that we have used.

The ground truth is obtained by finding the position of the

peak of the constant-Q transforms of solo instruments (such

as the second row of figure 4) at each time step (frame). We

first align the relative pitch track obtained in each of the trials

with this ground truth data. As can be seen in figure 5, the

majority of the trials (using the first mixture) converge to the

same correct solution. Ninety-two out of these one hundred

trials actually converge to an almost identical solution.

We then compute two error metrics. For the first metric,

we find the percentage of misclassified frames in each of the

trials. A frame is considered to be misclassified if the esti-

mated pitch differs from the ground truth by more than one

constant-Q bin as this corresponds to half a semitone (using

a constant-Q transform with 24 bins/octave). We have com-

puted the mean and the standard deviation of this error per-

centage for each instrument over the one hundred trials.

For the second metric, we find the difference between the

estimated pitch and the ground truth (in number of constant-

Q bins) at each frame. We then find the mean and standard

deviation of the number of bins over all one hundred trials.

As seen in table 1, the results are very satisfactory for the

first two mixtures. The error using the first metric is between

2.22% and 6.89%. The error using the second metric is al-

ways less than 1 bin. If we use the best ninety-two trials for

the first mixture, the errors go down to less than 1% and less

than 0.1 bin. The errors are higher in the third mixture. How-

ever, the error using the second metric is still less than 3 bins.

1From the development set for the MIREX 2007 multiF0 estimation

tracking task.

Fig. 5. Overlay plots of aligned pitch tracks. The resulting

pitch tracks from one hundred trials of our algorithm on a

mixture of a clarinet and a flute have been aligned and over-

layed. As can be seen, the majority of the trials converge to

the same correct solution.

4. CONCLUSIONS

We have presented an unsupervised learning algorithm that

is used for the estimation of the pitch of multiple concurrent

instruments and have demonstrated the algorithm on mixtures

of two instruments. The use of a prior distribution and tempo-

ral smoothing has been shown to improve certain shortcom-

ings of the algorithm. This method is quite promising and in

future work, we plan to improve the performance by model-

ing musical structure.
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