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ABSTRACT

In this paper, a new morphing algorithm for transient sounds is intro-
duced. Input sounds are first projected onto orthogonal bases from
which intermediate or novel sounds can be generated. The proposed
algorithm uses a shift invariant version of discrete wavelet transform
and the singular value decomposition (SVD) to represent the input
sound signals over a set of orthogonal bases. Interpolation is car-
ried out between the weight vectors from the SVD to produce a
new weight vector used for synthesising a new set of wavelet co-
efficients. The morphed sound is generated by taking the inverse
discrete wavelet transform of the combined weighted bases. The
proposed algorithm not only generates a range of new sounds, but
also represents the input sounds in a more compact fashion.

Index Terms— Audio morphing, sound synthesis, interpola-
tion, shift-invariant wavelet analysis, singular value decomposition

1. INTRODUCTION

Morphing is a general term referring to a set of widely used tech-
niques in audio, speech, image and video processing domains. In
the audio synthesis context, morphing is the process of: i) generat-
ing a smooth transition between two sounds; ii) hybridization of two
sounds to generate an intermediate sound which has the character-
istics of both sounds; and iii) hybridization of two or more sounds
to obtain interesting and novel sounds which have no resemblance
to the originals. These methods are commonly used in digital au-
dio effects processing and to design innovative sounds for gaming,
animation, and virtual reality applications.

Several algorithms have previously been proposed to morph or
interpolate input sounds using signal-base models. The sound mor-
phing algorithms presented in [1, 2, 3] used the sinusoidal model [4].
Sinusoidal model represents the input sounds as a summation of par-
tials which are interpolated or modified to synthesise the morphed
sound. Existing software tools [5, 6] have adopted these morphing
algorithms. Sinusoids plus noise model [7], has also been used [8] to
analyse the input sounds for the purpose of morphing. The magni-
tude of the partials were represented using Gaussian mixture models
(GMM) and the target morphed sound was generated by interpolat-
ing between these mixtures. Time, spectral shape, and pitch were
also used [9] as features and the new sound were obtained by per-
forming a smooth interpolation between the matching features of
the input sounds. These methods are based on the assumption that
the input sounds are stationary or quasi-stationary making represen-
tation of the input signals as a summation of harmonics reasonable.

However, these methods cannot in general synthesise or morph tran-
sient or non-stationary signals.

A wavelet-based analysis-synthesis method was previously pro-
posed by the authors [10]. A new sound morphing algorithm based
on discrete wavelet transforms and SVD is presented in this pa-
per which allows a better representation and morphing of transient
sounds. Section 2 presents a brief overview of wavelet transform and
introduces the shift invariant version of discrete wavelet transform
(DWT). The sound morphing algorithm is presented in Section 3.
Several practical examples are presented in Section 4. Section 5
concludes the paper.

2. SHIFT-INVARIANT DISCRETE WAVELET
TRANSFORM

The continuous wavelet transform of an input signal is computed
by convolving the input signal with scaled and translated set of
wavelets. These wavelets are generated from a single prototype
wavelet ψ(t) as:

ψa,b(t) =
1√
a
ψ

(
t− b

a

)
(1)

where a and b represent scaling and translating parameters respec-
tively. The prototype wavelet ψ(t), also called mother wavelet, must
satisfy

∫
ψ(t)dt = 0 condition.

The CWT of an input signal s(t) ∈ L2(�) can be computed as:

W(a, b) = 〈s(t), ψa,b(t)〉

=

∫ +∞

−∞
s(t)

1√
a
ψ∗

(
t− b

a

)
dt (2)

= s(t) ∗ ψa(t− b) (3)

where ψ∗ denotes the complex conjugate of ψ, (∗) in Eq. (3) rep-
resents the convolution, and ψa = 1√

a
ψ∗

(−t
a

)
. Equation (3) com-

putes the wavelet transform of the input signal that produces two
sets of coefficients i.e., detail coefficients, cd, and approximation
coeffieients, ca. Continuous wavelet transform is by itself shift-
invariant, i.e. the CWT of the signal and its time-shifted versions are
the same. However, computational complexity of CWT prohibits its
use in real-time and limits its use mainly to high-resolution signal
analysis applications.

To make the wavelet transform available for discrete-time sig-
nals, mother wavelet is sampled and a scaling factor of two is used
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Fig. 1. Shift-invariant analysis of input signals using wavelet trans-
form.

Fig. 2. Block diagram of the sound morphing algorithm.

such that the wavelet coefficients are computed only at dyadic scales.
Discrete wavelet transform (DWT) also involves a decimation pro-
cess which makes it a shift-variant transform. The lack of shift-
invariance is a well-known drawback of the DWT and a number of
shift-invariant wavelet transform schemes has been proposed in re-
cent years [11, 12] to overcome this problem. However, these trans-
forms are redundant and have a high computational complexity.

The authors have proposed [13] a simple shift-invariant analysis
scheme for finite-length transient signals based on minimum-phase
reconstruction and DWT. This shift-invariant version of DWT is non-
redundant and has a low computational complexity. The input signal
is decomposed into minimum-phase and allpass sequences by the
cepstrum analysis. The minimum-phase sequences of the original
signal and its time-shifted versions are identical for suitably band-
limited signals. The time-shift present in the signal is extracted as an
allpass sequence having the same phase as the original. The DWT
is applied to the minimum-phase version of the input signal and
the output signal can be reconstructed by reconstituting the phase
and the output minimum-phase sequence. The block diagram of the
shift-invariant DWT scheme used in this work is depicted in Fig. 1.

3. SOUND MORPHING ALGORITHM

The proposed morphing algorithm morphs the input sounds in the
synthesis parameter domain. To generate the morphed sound, the
synthesis parameters are interpolated to generate a new set of synthe-
sis parameters used in the synthesis process. A block diagram which
shows the main components of the algorithm is shown in Fig. 2. The
proposed algorithm can be divided into four distinct phases: analy-
sis, feature extraction, interpolation, and synthesis.

3.1. Analysis of input sounds

The proposed analysis block uses the shift-invariant analysis scheme
using discrete wavelet transform, summarised in Sec. 2, that sep-
arates the non-minimum phase and extracts the salient features of
the transient sounds. In Fig. 2, a set of sound signals, {si : i =
1, . . . ,m}, to be morphed are input to the analysis block. These
sound signals are first represented as a matrix,

S =

⎡
⎢⎢⎢⎣

s1

s2

...
sm

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

s1(1) s1(2) · · · s1(n)
s2(1) s2(2) · · · s2(n)

...
...

. . .
...

sm(1) sm(2) · · · sm(n)

⎤
⎥⎥⎥⎦ (4)

where each row contains samples of a transient sound signal, m
represents the number of sounds, and n represents the length of
each sound. The shift-invariant analysis using discrete wavelet trans-
form is applied to extract the features of the input sounds. The in-
put matrix S is decomposed into minimum-phase sequences matrix,
Smin, and allpass sequences matrix, Sap. The DWT is applied to the
minimum-phase sequences matrix, Smin, which decomposes it into
two sets of wavelet coefficient matrices: the approximation coef-
ficients, cA1, and the detail coefficients, cD1, where the subscript
represents the level of decomposition. The approximation coefficient
matrix cA1 is further split into two parts, cA2 and cD2, using the
same scheme. This decomposition process continues up to Lth level
which produces the following set of coefficient matrices:

cDi = [cds1
i cds2

i . . . cdsm
i ]T, for i = 1 · · ·L (5)

cAL = [cas1
L cas2

L . . . casm
L ]T

where each row represents the sound feature vector from a input
sound signal. The approximation coefficients represent the low-
frequency components. The detail coefficients represent the high-
frequency components.

3.2. Representation of sound features

The proper representation of the sound features is an essential ele-
ment of the morphing process. The extracted sound features should
be presented in such a way that their similarities, differences, and
relationships with the input sounds are preserved and reflected in the
sound parameters. In the proposed model, singular value decompo-
sition (SVD) is used which is a powerful data analysis technique.
SVD helps to identify any existing patterns in the input data, and
highlights the similarities and differences [14]. The SVD of a real
valued m × n rectangular matrix X (where m < n) can be written
as:

X = P Ω QT
(6)

where P = [p1,p2, . . . ,pm] is an m×m orthonormal matrix (i.e.
PPT = I), Ω is an m × n rectangular diagonal matrix equal to
[diag{w1, w2, . . . , wm} : 0], and Q = [q1, q2, . . . , qn] is an
n × n orthonormal matrix (i.e. QQT = I). The diagonal elements
wi are the singular values, the vectors pi are the left singular vectors,
and the vectors qi are the right singular vector of X. Furthermore,
the ωi, pi, and qi are sorted according to the amount of variation.
Rows of matrix QT are orthonormal and form a linearly independent
basis which spans the input matrix X, and the matrix Ω is a rectan-
gular diagonal matrix with diagonal elements ω1, ω2, . . . , ωm ∈ �.
Therefore, the matrix product ΩQT produces a matrix Δ whose
rows are orthogonal and also form the linearly independent basis
which spans the input matrix X. Thus, (6) becomes:

X = PΔ (7)
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where Δ is an m × n matrix. The matrices in Eq. (7) can be ex-
panded as:

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

x1

x2

...
xm

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

p11 p21 · · · pm1

p12 p22 · · · pm2

...
...

. . .
...

p1m p2m · · · pmm

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

δ1
δ2
...
δm

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(8)

where {xi : i = 1, . . . ,m} and {δi = wiqi : i = 1, . . . ,m} are
the row vectors. An important relationship between the input matrix
X and the orthogonal basis matrix Δ is revealed in (7) and (8) i.e.,
each input row vector xi ∈ X can be written as a weighted linear
combination of orthogonal basis vectors [δ1, δ2, . . . , δm]. There-
fore, Eq. (8) can be generalised as:

xi = pi Δ =

m∑
j=1

pji δj for i = 1 · · ·m and r ≤ m (9)

where pi = {pij : 1 ≤ j ≤ m} is the weight vector for the input
vector xi. This means that any row vector xi ∈ X can be perfectly
reconstructed using the corresponding weight vector p ∈ P and the
orthogonal bases Δ obtained using SVD.

For obtaining a common feature bases for the input sounds, the
wavelet coefficient matrices {cD1, . . . , cDL, cAL} are decom-
posed using SVD and represented as in (7) where a weight matrix
P and a set of orthogonal basis matrix Δ are obtained to represent
each coefficient matrix. Therefore, (5) can be expressed as:

cDi = PcDiΔcDi , for i = 1 · · ·L (10)

cAL = PcALΔcAL

This presents a parametrisation of several sounds on a set of com-
mon bases and can be used to synthesise any one of the input sounds
perfectly using the full set of orthogonal bases (r = m) or approxi-
mately using first few orthogonal bases (r < m).

3.3. Interpolation in the synthesis parameter domain

In the proposed parameterisation, the weight vectors control the
characteristics of the generated sound. Different types of sounds
can be generated by interpolating between these weight vectors.
A simple linear interpolation scheme is easier for obtaining inter-
mediate parameters and simplifies their mapping. However, other
interpolation strategies with a better perceptual correlation can also
be applied. Linear interpolation between two weight vectors pi and
pj can be expressed as:

p = α pi + (1 − α) pj where i 	= j and 0 ≤ α ≤ 1 (11)

where α is the interpolation coefficient and p is the morphed weight
vector that is used to synthesise the morphed sound over the common
bases. Linear interpolation can be carried out between more than two
weight vectors. For example, to generate a new weight vector p by
interpolating between three weight vectors can be written as:

p = α pi + β pj + (1 − α− β) pk. (12)

In Eq. (12), if 0 ≤ α + β ≤ 1 and 0 ≤ α, β ≤ 1 then the inter-
polated weight vector p resides on the hypertriangle formed by the
original weight vectors in the multidimensional vector space. Once
the SVD of the approximation and detail wavelet coefficients of the
input sounds are obtained, the interpolation is carried out between
the weight vectors.

3.4. Synthesis of the morphed sound

In the synthesis process, the target sound is generated by taking the
inverse discrete wavelet transform (IDWT) of the set of approxima-
tion and detail coefficients which are obtained by weighting the or-
thogonal bases with the interpolated weight vectors. The generation
of target sound and the interpolation of weight vectors in synthesis
parameters domain can thus be expressed as:

ŝ(n) = IDWT

{
cdi = pcDi

ΔcDi , for i = 1 · · ·L
cdL = pcAL

ΔcAL .
(13)

where ŝ(n) is the target morphed sound, pcDi
and pcAL

are the in-
terpolated weight vectors for detail and approximation components
respectively. These weight vectors can be calculated independently
for each set of bases using (11).

The residual phase response obtained as a result of minimum-
phase reconstruction can first be interpolated and then reconstituted
either by convolving the obtained morphed output with the allpass
sequence containing the phase information, or by designing and us-
ing an allpass IIR filter modeling the excess phase response.

4. MORPHING EXAMPLES

The presented sound morphing algorithm is implemented on every-
day impact sounds to generate intermediate and novel sounds. A
group of impact sounds were recoded in an acoustical booth (T60 <
100 ms). These contain bumping sounds of football, basketball, and
taped tennis ball (tennis ball covered with plastic insulation tape) on
laminate floor. A sequence of sound events was recorded for each
sound source at a sampling rate of 44.1 kHz.

4.1. Intermediate sounds

Two transient sounds from the same type of acoustical interaction
under different conditions can be used in the morphing operation
to generate physically plausible intermediate sounds. The presented
morphing model is used to morph between two sounds of a foot-
ball dropped from a height of 40 cm and from 120 cm, respec-
tively, to generate the sound of a football dropped from an inter-
mediate height. The input sounds were decomposed up to 5th level
using the ‘db4’ wavelet and the features were represented as orthog-
onal bases and weight vectors using the SVD. The interpolation be-
tween the weight vectors are performed as in (11) with αcD1 = 0.4,
αcD2 = αcD3 = 0.2, αcD4 = αcD5 = 0.6, αcA5 = 0.5, and
the intermediate sound is generated as described. The original input
sounds and the generated intermediate sound ŝ are plotted in Fig. 3.
Their magnitude spectra are shown in Fig. 4. It may be observed
from Figs. 3 and 4 that the generated sound has a magnitude spec-
trum in between the magnitude spectra of the two input sounds. The
interpolation and manipulation of allpass sequence also play an im-
portant role in the perception of the generated sound.

4.2. Novel Sounds

Two or more sounds from different sound sources can be interpo-
lated to generate novel sounds which do not correspond to any phys-
ical interaction but are merely hybrid sounds. The presented mor-
phing model is used to interpolate taped tennis ball with the bas-
ketball to generate a novel sound. The synthesis weight vectors
were interpolated to generate new weight vector using Eq. (11) with
αcD2 = αcD4 = 0.2, αcD1 = αcD3 = αcD5 = αcA5 = 0.5. The
input sounds and the synthesised sound are plotted in Fig. 5.
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Fig. 3. Input football sounds and the generated intermediate sound.
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Fig. 4. Magnitude spectrum of input football sounds and the gener-
ated intermediate sound.
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Fig. 5. Input taped tennis ball, basketball, and the generated novel
sounds.

5. CONCLUSIONS

A sound morphing algorithm was presented in this paper which can
be used to generate intermediate and novel sounds from a set of in-
put sounds. It was suggested that the interpolation between the input
sounds can be performed in the synthesis parameter domain. The
presented method uses a shift-invariant version of discrete wavelet
transform to analyse transient impact sounds and extracts the salient
sound features. The wavelet coefficients of the input signals are pro-
jected onto a set of common bases by the singular value decompo-

sition. The morphing is carried out between the weight vectors ob-
tained from the singular value decomposition and the common bases
for each set of detail and approximation wavelet coefficients. The
morphed sound is obtained by inverting the wavelet transform and
incorporating the interpolated phase. Two examples were presented.
The first example shows how an intermediate sound can be obtained
from two transient input sounds obtained from the same type of
acoustic interaction. The second example shows how a novel sound
can be obtained from two sounds from different types of acoustic
interaction.
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