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ABSTRACT
This paper proposes a continuous HRTF representation in both 3D
spatial and frequency domains. The method is based on the acous-
tic reciprocity principle and a modal expansion of the wave equation
solution to represent the HRTF variations with different variables in
separate basis functions. The derived spatial basis modes can achieve
HRTF near-field and far-field representation in one formulation. The
HRTF frequency components are expanded using Fourier Spherical
Bessel series for compact representation. The proposed model can
be used to reconstruct HRTFs at any arbitrary position in space and
at any frequency point from a finite number of measurements. Ana-
lytical simulated and measured HRTFs from a KEMAR are used to
validate the model.

Index Terms— Modal Analysis, HRTF, Reconstruction

1. INTRODUCTION

The Head-Related Transfer Function (HRTF) is a description of the
transformation of a given sound wave input (parameterized as fre-
quency and source location) filtered by the diffraction and reflection
properties of an individual’s body. It is usually obtained from mea-
surements on people (or dummy heads). Such data is naturally taken
from systematic measurements over a discrete set of angles and at
discrete frequencies or time samples. Whilst the data is discrete by
necessity, it is understood that the underlying HRTF is fully contin-
uous in space (both angle and range) and frequency.

Many techniques have been proposed to perform the interpola-
tion [1] of the HRTF from the discrete measurements but the most
appropriate interpolation can be still considered as an open ques-
tion. An alternative method is to seek continuous representations of
the HRTF in the 2D angle domain, like a weighted sum of spherical
harmonics [2], so that the need for interpolation is removed. The
work of [3] further applies a series of multi-poles (including spher-
ical Hankel function and spherical harmonics) as basis to capture
both angle and range variations.

Our approach is based on the acoustic reciprocity principle and
modal expansion of the wave equation solution to develop a con-
tinuous HRTF representation in all frequency-range-angle domains.
The contributions of our approach are as follows: i) separable basis
functions to represent the HRTF dependence on each variable; ii) the
normalized spatial modes to achieve near-field and far-field HRTFs
representation in one formulation; iii) the decomposed model coeffi-
cients show that the HRTF spectrum has underlying pattern of spher-
ical Bessel functions and we propose to use Fourier Spherical Bessel

Fig. 1. Geometry of the HRTF measurement based on the reciprocity
principle.

(FSB) series to expand the HRTF frequency components. The goal
of this series representation is to generate coefficients more compact
(few parameters) for HRTF representation with high accuracy. In
summary, the proposed model can help to obtain the HRTF at any
frequency for an arbitrary position from existing measurements con-
ducted on a single sphere (source position)1.

2. MODAL ANALYSIS OF HRTFS

HRTFs are usually obtained by emitting a signal from a loudspeaker
at different positions in the space and recording it at a microphone
in the listener’s ear. At the physical level, the HRTF is characterized
by the classical wave equation subject to boundary conditions. The
general solution to the wave equation can be decomposed with re-
spect to each variable (frequency, range and angle). In this section,
we use the modal expansion of the wave equation solution to derive
a general representation of the HRTF.

The wavefield between the microphone and the speaker location
contains sources (the speaker), the scatterer (human head and body)
and the receiver (listener’s ear), which does not satisfy the condi-
tion of being source free for modal expansion analysis. We use the
principle of reciprocity [4] as used in [3] to remove this difficulty.
The reciprocity principle states that the acoustic signal received at
a receiver is the same as measured at the source location when the
source and receiver locations are interchanged and the same excita-
tion is applied.

Here for HRTF analysis, we assume that the acoustic sources are
located at the listener’s ears and microphones are at some distance

1We only consider the case that no objects are within the space between
the loudspeakers and human subjects.
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away (Fig. 1). We analyze the wavefield at these microphone posi-
tions which is a typical exterior problem (all sources inside a spher-
ical surface). From the Huygens-Fresnel principle [5], the scatterers
can be thought as producing new wavefronts (or regarded as new
sources). Hence, we consider all the scattering sources as the sec-
ondary level sources with the original sources at the listener’s ears
together constituting an equivalent source field. As shown in Fig. 1,
this source field is encompassed in a sphere (origin is the head cen-
ter) and as a function of angular position (source) and frequency. We
write the source field at radius s (s is greater than the head radius a)
as

ρ(φ̂s, k) =

∞∑
n=0

n∑
m=−n

αm
n (k)Y m

n (φ̂s), (1)

where φ̂s is a unit vector (2D angle) to the direction of the source
and Y m

n (·) are spherical harmonics. The αm
n (k) are the spherical

harmonics coefficients of the source field and obtained from

αm
n (k) =

∫
S2

ρ(φ̂s, k)Y m
n (φ̂s)dφ̂s (2)

on the 2-sphere S
2 [5] at wavenumber k, k = 2πf/c, where f is the

frequency, c is the speed of sound propagation and (·) stands for the
complex conjugate. We can see that αm

n (k) carry the information
about the source and also the human scattering behavior.

Then the received signal at y ≡ {r, φ̂} (the HRTF correspond-
ing to that position) can be written in terms of the source field as

Ĥ(r, φ̂, k) =

∫
S2

ρ(φ̂s, k)
eik‖sφ̂s−y‖

4π‖sφ̂s − y‖dφ̂s (3)

where r is the distance between the head center (origin, or source

center) and receiver position and φ̂ is the direction of the receiver.
Note the integral is over the sphere to account for all of the sources.

Using the Jacobi-Anger expansion [5], we have

eik‖sφ̂s−y‖

4π‖sφ̂s − y‖ = ik

∞∑
n=0

n∑
m=−n

jn(ks)h(1)
n (kr)Y m

n (φ̂s)Y
m

n (φ̂),

(4)

where jn(·) is the spherical Bessel function and h
(1)
n (·) is the spher-

ical Hankel function of the first kind. By substituting (4) into (3), we
can expand the 3D HRTF as

Ĥ(r, φ̂, k) =

∞∑
n=0

n∑
m=−n

βm
n (k)h(1)

n (kr)Y m
n (φ̂) (5)

where
βm

n (k) = 4πik αm
n (k)jn(ks). (6)

In (5), HRTF dependence on each variable (frequency, range, and an-
gle) is represented by separate basis functions (note the radial part is
with variable range measured in wavelengths as it being a function

of kr). The spatial modes h
(1)
n (kr)Y m

n (φ̂) account for the HRTF
spatial variations as in [3] and βm

n (k) are the modal decomposed
HRTF frequency components. In the next section we further de-
velop this representation to i) link the near-field and far-field HRTFs
directly and ii) parameterize the frequency components by a set of
basis functions.

3. HRTF CONTINUOUS REPRESENTATION

In this section, we modify the basis functions in the general repre-
sentation (5) to derive an efficient continuous representation of the
HRTF in both spatial and frequency domains.

H(φ̂, k)
FAR-FIELD HRTF ��

Y m
n (φ̂) βm

n (k)

��

��
Rn(kr) Y m

n (φ̂)
H(r, φ̂, k)

NEAR-FIELD HRTF

��

∞∑
n=0

n∑
m=−n

βm
n (k)Y m

n (φ̂)

∞∑
n=0

n∑
m=−n

βm
n (k)Rn(kr) Y m

n (φ̂)

Fig. 2. Modal decomposition of the HRTF with radial invariant fre-
quency components.

3.1. Normalized Modes for HRTF Spatial Representation

The spatial modes in (5) cannot represent the far-field HRTFs be-
cause the radial term tends to zero, viz.,

h(1)
n (kr) → (−i)(n+1) eikr

kr
, as r → ∞. (7)

It is desired to normalize the spherical Hankel function, i.e.,

Rn(kr) � i(n+1)kre−ikrh(1)
n (kr), (8)

so that we can achieve both near-field HRTF and far-field HRTF rep-
resentation in one formulation. Further,

lim
r→∞

Rn(kr) = 1, ∀n. (9)

The modified HRTF representation with normalized modes is in the
following form

H(r, φ̂, k) =

∞∑
n=0

n∑
m=−n

βm
n (k)Rn(kr)Y m

n (φ̂) (10)

for the near-field HRTFs and when r → ∞,

H(φ̂, k) =

∞∑
n=0

n∑
m=−n

βm
n (k)Y m

n (φ̂). (11)

Equations (10) and (11) show that the HRTF frequency components
βm

n (k) are radially invariant and can be obtained from the spherical
harmonic transform of the measurements on a single sphere, i.e.,

βm
n (k) =

{
1

Rn(kr)

∫
S2

H(r, φ̂, k)Y m
n (φ̂)dφ̂, for near-field∫

S2
H(r, φ̂, k)Y m

n (φ̂)dφ̂, for far-field

(12)
and later used for HRTF reconstruction at any spatial point, as shown
in Fig. 2.

3.2. FSB Series for HRTF Frequency Representation

The goal of seeking an efficient continuous HRTF frequency repre-
sentation is to determine the spectrum of HRTF with better spectral
resolution and fewer parameters. The exhibiting characteristic of
βm

n (k) is the underlying pattern of the spherical Bessel functions
(implicitly shown in (6)), which means the signal can be more com-
pactly represented by the spherical Bessel function rather than com-
plex exponentials. Next, we use the spherical head model [6] as an
example, in which the HRTFs are represented as

ϕH(r, Θ, k) =
−r

ka2
e−ikr

∞∑
n=0

(2n+1)Pn(cos Θ)
h

(1)
n (kr)

h
′(1)
n (ka)

, r > a

(13)
where Θ is the angle of incidence, Pn(·) is a Legendre polynomial

of order n and h
(1)
n (·), h′(1)

n (·) are the spherical Hankel function of
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(a) (b)

Fig. 3. Examples to demonstrate the structural similarities between
the HRTF frequency components βm

n (k) and the spherical Bessel
functions of the first kind. Top plots and middle plots are the real
and imaginary parts of βm

n (k) with (a) n = 0, m = 0 and (b) n =
12, m = 0; and the bottom plots are the spherical Bessel functions
jn(·) at the corresponding order n = 0 and n = 12 with against
arguments from 0 to 30.

the first kind and its derivative. Applying the addition theorem [5]
to expand the above model in spherical harmonics Y m

n (·), the HRTF
frequency components are

βm
n (k) =

4πY m
n (φ̂ear)

i(n+2)

(
jn(ka) − j

′
n(ka)

h
(1)
n (ka)

h
′(1)
n (ka)

)
. (14)

The first component represents the incident wavefield and the sec-
ond term is the scattered field. Both show the similar structures to
the spherical Bessel functions; so we can observe the strong correla-
tion between the HRTF frequency components and spherical Bessel
functions in Fig. 3.

Thus, we apply the Fourier Spherical Bessel (FSB) series for
HRTF frequency components representation. The FSB series [7]
(derived from the Fourier Bessel series) are orthogonal basis func-
tions on the interval (0, 1)∫ 1

0

x2jn

(
xZ(n)

q

)
jn

(
xZ(n)

r

)
dx =

1

2
δ�,r

(
jn+1(Z

(n)
q )

)2

,

(15)

where Z
(n)
q and Z

(n)
r are the positive roots of the jn(·). And the

derived HRTF frequency components representation is

βm
n (k) =

∞∑
q=1

Am
n;q jn

(
Z

(n)
q

kmax

k

)
, (16)

where from (15)

Am
n;q =

2

k3
maxJ2

n+1

(
Z

(n)
q

) ∫ kmax

0

k2βm
n (k) jn

(
Z

(n)
q

kmax

k

)
dk.

(17)
kmax is the maximum wave number of an HRTF data set.

The above development leads to the HRTF functional model
written as

H(r, φ̂, k) =

∞∑
n=0

n∑
m=−n

∞∑
q=1

Am
n;qjn

(
Z

(n)
q

kmax

k

)
Rn(kr)Y m

n (φ̂),

(18)
where the modal coefficients Am

n;q are solved from (12) and (17).
Given discrete experimentally measured HRTFs, we use the left Rie-
mann sum to approximate both integrals2.

2The problem of no complete data set over the sphere in the HRTF mea-
surements (low elevation measurements are missing) is solved by the extrap-
olation algorithm [8].

Fig. 4. Dependence of the spherical Bessel function jn(ks) in the
order n at different ks shown on the vertically shifted curves.

4. IMPLEMENTATION DETAILS: CHOICE OF
TRUNCATION NUMBER

For practical implementation, the key issue is the truncation of the
spatial modes decomposition, through parameter N0, and FSB se-
ries expansion, through parameter Q0, in the proposed model (18)
denoted as

H(r, φ̂, k) =

N0−1∑
n=0

n∑
m=−n

Q0∑
q=1

Am
n;qjn

(
Z

(n)
q

kmax

k

)
Rn(kr)Y m

n (φ̂)

(19)
which transforms any HRTF data set to a coefficients set {Am

n;q} of
the size N2

0 × Q0.

4.1. Truncation of Spatial Modes Decomposition

The spherical Bessel function jn(ks) determines the truncation of
the HRTF decomposition with spatial modes. Fig. 4 shows that when
n < �eks/2�, the spherical Bessel functions oscillate and there is no
decay in the amplitude for growing n; however, when n ≥ �eks/2�
the functions monotonically decay to zero with growing n, where
�·� is the integer ceiling function. So guided by [9], we choose the
truncation order

N0 = �ekmaxs/2� + 1 (20)

for a specified HRTF data set by the maximum wavenumber kmax and
s taken to be the radius of the sphere which encloses all the scattering
sources. Here we choose s = 0.1m to include all the head scattering
(note larger values to add shoulder and torso reflection may further
improve the reconstruction accuracy).

4.2. Truncation of FSB Series Expansion

Firstly, we should state that due to the structural similarities between
FSB series and the HRTF frequency components, compared to other
basis functions the FSB series provide the most accurate reproduc-
tion under the same truncation order. Further, Fig. 5 shows the en-
ergy of Am

n;q calculated from the spherical head mode at r = 1.0
m with kmax = 296 (16 kHz) along the FSB series expansion order.
We found 90% of the energy is kept in the first 10 components, i.e.,
Q0 = 10 for the analytical simulated HRTFs. Section 5.2 shows for
real data, this value may need to increase due to the more compli-
cated waveforms caused by diffraction and reflection of the human
(or dummy) head.

5. MODEL VALIDATION

The effectiveness of the proposed HRTF continuous representation
is investigated by decomposing the experimentally measured (or
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Fig. 5. Decomposed model coefficients energy of the HRTF from
the spherical head model versus the FSB series expansion order q.

(a) (b)

Fig. 6. Analytically simulated HRTFs at r = 1.0 m (top plots) and
the reconstructed HRTFs at r = 0.5 and r = 0.25 m (a) compared
to the reference (b). The horizontal axis is frequency and the vertical
axis is azimuth from [−π, π].

analytically simulated) HRTFs on a single sphere and reconstruct
HRTFs at any frequency for an arbitrary spatial location.

5.1. Analytical Solutions

We decompose the analytically simulated HRTFs [6] at 1.0 m with
961 samples on the sphere to obtain the Am

n;q . The truncation number
of N0 is 32 for frequency up to 12 kHz according to (20) and Q0 =
10 from analysis in Section 4.2. In Fig. 6, the plots on the right
are the magnitudes of the analytical HRTF at different ranges at the
equator, compared to the reconstructions from the proposed model
on the left. We observe the reconstruction is perfect with average
approximation error around 0.52%.

5.2. KEMAR Data

The MIT data is acquired using a KEMAR manikin [10] at a distance
of 1.4 m with sampling rate of 44.1 kHz. We use this data to check
the frequency reconstruction performance of the proposed model.
Note that the data is not available on the whole sphere (710 samples
with low elevation measurements missing). We use the extrapola-
tion algorithm developed in [8] to estimate the missing HRTFs. The
model decomposition is performed during the frequency range of
[0.2, 10] kHz so we choose N0 = 27. Here we choose Q0 = 120
(keeping 90% of the coefficients energy), which is larger than for
the spherical head model due to complicated diffraction of the head.
Fig. 7 shows the mean squared reconstruction error at each frequency
bin. The maximum error is less than 1.4% and the error increases
with frequency (because the truncation number N0 is determined
from the maximum wavenumber in (20), which can fit the low fre-
quency data very well).

Fig. 7. The MIT left ear HRTFs reconstrunction error at each fre-
quency bin.

6. CONCLUSION

A continuous functional model was developed for the HRTF rep-
resentation in both spatial and frequency domains. The method is
powerful for the computation of the HRTF at any arbitrary position
in space and at any frequency point from a given set of measurements
at a fixed distance. We observed good HRTF spatial and frequency
components reconstruction and extrapolation results from both ana-
lytical solutions and KEMAR data.
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