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ABSTRACT

Sound eld reproduction methods like higher order Ambisonics
which are based on orthogonal expansions always introduce a lim-
itation of the spatial bandwidth of the secondary source driving
function. This spatial truncation creates a sweet spot in the center
of the secondary source distribution. This spot, or rather area, is
“sweet” both in terms of spatial aliasing artifacts as well as in terms
of accuracy of the desired component of the reproduced wave eld.
The higher the temporal frequency of the reproduced wave eld the
smaller is the sweet spot. In this paper we show that the location
sweet spot can be moved freely inside the secondary source distri-
bution. The accuracy of the actual reproduced wave eld is then
signi cantly higher in the sweet spot than in the same region in the
conventional approach.

Index Terms— Higher order Ambisonics, sweet spot, Fourier
series, spatial aliasing

1. INTRODUCTION

Wave eld reproduction methods aiming at the reproduction over
an extended receiver area typically employ a high number of loud-
speakers which surround the receiver area. Due to the physical
properties of practical implementations, artifact-free reproduction
can not be achieved. When numerical methods are employed as
e.g. in [1], the reproduction can be optimized with respect to a target
area commonly referred to as sweet spot. The location of this sweet
spot can be chosen with some amount of freedom. However, numer-
ical approaches are computationally expensive and give only little
insight into the properties of the actual reproduced wave eld.
Analytical approaches are typically signi cantly bene cial both in
terms of computational complexity as well as in terms of inter-
pretability of the results. However, the target area with respect to
which the reproduction is optimized is con ned to the center of the
loudspeaker array. In this paper, we extend the analytical approach
presented by the authors in [2, 3] such that the sweet spot can be
freely positioned inside the secondary source distribution (i.e. the
loudspeaker array).
Note that we do not consider wave eld synthesis (WFS) in this
paper. This is due to the fact that WFS as commonly implemented
does not exhibit a pronounced sweet spot. It is rather such that
spatial aliasing is spread over the entire receiver area for higher
frequencies [3].

2. NOMENCLATURE

For convenience, we restrict our considerations to two spatial di-
mensions. This means in this context that a wave eld under
consideration is independent from one of the spatial coordinates,
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Fig. 1. The coordinate system used in this paper. The center of the
secondary source distribution coincides with the origin of the global
coordinate system. The prime ′ denotes quantities belonging to a
local coordinate system with origin xc (refer to section 4.1).

i.e. P (x, y, z, ω) = P (x, y, ω). The two-dimensional position vec-
tor in Cartesian coordinates is given as x = [x y]T . The Cartesian
coordinates are linked to the polar coordinates via x = r cos α and
y = r sin α. Refer to the coordinate system depicted in gure 1.
The acoustic wavenumber is denoted by k. It is related to the tempo-
ral frequency by k2 =

(
ω
c

)2
with ω being the radial frequency and c

the speed of sound. Outgoing monochromatic plane and cylindrical
waves are denoted by e−j ω

c
r cos(θpw−α) and H

(2)
0 (ω

c
r) respectively,

with θpw being the propagation direction of the plane wave. The
imaginary unit is denoted by j (j =

√−1).

3. GENERAL FORMULATION

In this section, we brie y review the general approach presented by
the authors in [2, 3]. Its physical fundament is the so-called sim-
ple source approach and it can be seen as an analytical formulation
of what is known as higher order Ambisonics. The simple source
approach for interior problems states that the acoustic eld gener-
ated by events outside a volume can also be generated by a continu-
ous distribution of secondary simple sources enclosing the respective
volume [4].
As stated in section 2, we limit our derivations to two-dimensional
reproduction for convenience. Furthermore, we assume the distribu-
tion of secondary sources to be circular. In order to ful ll the require-
ments of the simple source approach and therefore for artifact-free
reproduction, the wave elds emitted by the secondary sources have
to be two-dimensional. We thus have to assume a continuous cir-
cular distribution of secondary line sources positioned perpendicular
to the target plane (the receiver plane) [4]. Our approach is there-
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fore not directly implementable since loudspeakers exhibiting the
properties of line sources are commonly not available. Real-world
implementations usually employ loudspeakers with closed cabinets
as secondary sources. The properties of these loudspeakers are more
accurately modeled by point sources.
The main motivation to focus on two dimensions is to keep the
mathematical formulation simple in order to illustrate the general
principle of the presented approach. The extension both to three-
dimensional reproduction (i.e. spherical arrays of secondary point
sources) and to two-dimensional reproduction employing circular ar-
rangements of secondary point sources is straightforward and can be
found e.g. in [2].

3.1. Derivation of the secondary source driving function

The reproduction equation for a continuous circular distribution of
secondary line sources and with radius r0 centered around the origin
of the coordinate system is given by

P (x, ω) =

2π∫
0

D(α0, ω) G2D(x − x0, ω) r0 dα0 , (1)

where x0 = r0 · [cos α0 sin α0]
T . P (x, ω) denotes the reproduced

wave eld, D(α0, ω) the driving function for the secondary source
situated at x0, and G2D(x − x0, ω) its two-dimensional spatio-
temporal transfer function.
A fundamental property of (1) is its inherent non-uniqueness and
ill-posedness [5]. I.e. in certain situations, the solution is unde ned
and so-called critical or forbidden frequencies arise. The forbid-
den frequencies are discrete and represent the resonances of the
cavity under consideration. However, there are indications that the
forbidden frequencies are only of minor relevance when practical
implementations are considered [4].
Equation (1) constitutes a circular convolution and therefore the
convolution theorem

P̊ν(r, ω) = 2πr0 D̊ν(ω) G̊ν(r, ω) (2)

applies [6]. P̊ν(r, ω), D̊ν(ω), and G̊ν(r, ω) denote the Fourier series
expansion coef cients of P (x, ω), D(α, ω), and G2D

(
x − [r0 0]T

)
1.

The Fourier series expansion coef cients F̊ν(r, ω) of a two-dimensional
function F (x, ω) can be obtained via [4]

F̊ν(r, ω) =
1

2π

2π∫
0

F (x, ω)e−jνα dα . (3)

The function F (x, ω) can then be synthesized as

F (x, ω) =

∞∑
ν=−∞

F̊ν(r, ω) ejνα . (4)

For propagating wave elds the coef cients F̊ν(r, ω) can be decom-
posed as

F̊ν(r, ω) = F̆ν(ω)Jν

(ω

c
r
)

, (5)

1Note that the coef cients G̊ν(r, ω) as used throughout this paper assume
that the secondary source is situated at the position (r = r0, α = 0) and is
orientated towards the coordinate origin.

whereby Jν(·) denotes the ν-th order Bessel function [4].
From (2) and (5) we can deduce that

D̊ν(ω) =
1

2πr0

P̊ν(r, ω)

G̊ν(r, ω)
= (6)

=
1

2πr0

P̆ν(ω) · Jν

(
ω
c
r
)

Ğν(ω) · Jν

(
ω
c
r
) (7)

For Jν

(
ω
c
r
) �= 0 the Bessel functions in (7) cancel out directly.

Wherever Jν

(
ω
c
r
)

= 0 de l’Hôpital’s rule [7] can be applied to
proof that the Bessel functions also cancel out in these cases, thus
making D̊ν(ω) and therefore also D(α0, ω) independent from the
receiver position.
Introducing the result into (4) nally yields the secondary source
driving function D(α0, ω) for a secondary source situated at posi-
tion x0 reproducing a desired wave eld with expansion coef cients
P̆ν(ω) reading

D(α, ω) =
1

2πr0

∞∑
ν=−∞

P̆ν(ω)

Ğν(ω)
ejνα , (8)

whereby we omitted the index 0 in α0 for convenience.
We assume monopole line sources in the remainder of this paper
for convenience. The two-dimensional free- eld Green’s function
G2D(x − x0, ω) representing the spatio-temporal transfer function
of a secondary source at position x0 is then the zero-th order Hankel
function of second kind H

(2)
0

(
ω
c
|x − x0|

)
[4].

Equation (8) can be veri ed by inserting it into (1). After introduc-
ing the Fourier series expansion of the secondary source wave elds
according to (4), exchanging the order of integration and summa-
tion, and exploitation of the orthogonality of the circular harmonics
ejνα [4] one arrives at the Fourier series expansion of the desired
wave eld, thus proving perfect reproduction. Note however that the
coef cients P̆ν(ω) respectively Ğν(ω) are typically derived from
interior expansions. This implies that the desired wave eld is only
correctly reproduced inside the secondary source distribution.

3.2. Properties of the reproduced wave eld

For the theoretic continuous secondary source distribution, any wave
eld which is source-free inside the secondary source distribution

can be perfectly reproduced apart from the forbidden frequencies
(refer to section 3.1).
Real-world implementations of audio reproduction systems will al-
ways employ a nite number of discrete secondary sources. This
spatial discretization constitutes spatial sampling and results in spa-
tial aliasing. In this section, we brie y review the consequences of
spatial sampling. A thorough treatment can be found in [3, 8].
It can be shown that the angular sampling of the driving function re-
sults in repetitions of the angular spectrum of the continuous driving
function D̊ν(ω) [8]

D̊ν,S(ω) =

∞∑
η=−∞

D̊ν+ηL(ω) , (9)

when L equiangular sampling points (i.e. loudspeakers) are taken.
Equation (2) states that the angular spectrum of the reproduced wave
eld P̊ν(r, ω) is equal to the angular spectrum of the driving function

D̊ν(ω) weighted by the angular spectrum of the secondary sources
G̊ν(r, ω). Note that all angular spectra are taken with respect to the
expansion around the origin of the global coordinate system.
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In order to yield the angular spectrum P̊ν,S(r, ω) of the wave eld
reproduced by a discrete secondary source distribution, the spectral
repetitions given by (9) have to be introduced into (2). The case of
η = 0 then describes the desired component of the reproduced wave
eld. The cases of η �= 0 describe additional components due to

sampling. Note that these additional components can not be avoided.
In order to further investigate the properties of the wave eld repro-
duced by a discrete secondary source distribution, we have to choose
a sample scenario. For convenience, we assume a distribution of
L = 56 secondary monopole line sources reproducing a monochro-
matic plane wave with propagation direction θpw = 3π

2
. In this case

Ğν(ω) = j
4
H

(2)
ν

(
ω
c
r0

)
and P̆ν(ω) = j−νe−jνθpw [4, 9].

The Fourier coef cients D̊ν(ω) of the continuous driving function
for the above described scenario are illustrated in gure 2(b). It can
be seen that D̊ν(ω) is not bandlimited with respect to the angular fre-
quency ν. Thus, when the angular bandwidth of the driving function
is not arti cially limited, the angular repetitions overlap and inter-
fere.
In order to avoid such overlapping and interference of the spectral
repetitions, the angular bandwidth of the continuous driving func-
tion can be limited as

DN (α, ω) =
1

2πr0

N∑
ν=−N

P̆ν(ω)

Ğν(ω)
ejνα , (10)

whereby N = L−1
2

when a discrete distribution of an odd number
L of secondary sources is considered and accordingly for even L.
Strictly spoken, when (10) is applied spatial aliasing is prevented
since no spectral overlaps occur. However, since the spatial spec-
trum G̊ν(r, ω) of the secondary sources is not bandlimited, spatial
repetitions of the driving function will always be reproduced. Refer
to gure 2(a). Although this is rather a reconstruction error [3] it is
commonly also referred to as spatial aliasing. We do so as well in
the remainder for convenience.
The band-limitation according to (10) keeps the center of the sec-
ondary source setup free of aliasing artifacts [3]. However, as a
consequence of this spectral band-limitation, the spatial bandwidth
of the desired component of the reproduced wave eld is also lim-
ited. The energy of the desired component of the reproduced wave
eld concentrates around the center of the secondary source distribu-

tion especially for high temporal frequencies. Compare gures 3(a)
and 3(b). I.e., wave elds with high temporal frequency content can
not be reproduced farther away from the array center than a certain
critical distance with such a spatially bandlimited driving function.
In other words, the above described approach of sound eld repro-
duction exhibits a pronounced sweet spot in the center of the sec-
ondary source distribution both in terms of spatial aliasing artifacts
as well as in terms of accuracy of the desired component of the re-
produced wave eld.
Note that increasing the spatial bandwidth of the driving function
does indeed increase the spatial bandwidth of the desired component
of the reproduced wave eld. However, it also signi cantly increases
spatial aliasing.

4. MOVING THE SWEET SPOT

It will be shown in the following that the system inherent sweet spot
can be moved by limiting the spatial bandwidth of the desired wave
eld P (x, ω) with respect to an expansion center other that the cen-

ter of the secondary source distribution. The sweet spot then coin-
cides with this new expansion center.
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(c) Continuous driving function∣∣∣D̊c,ν(ω)
∣∣∣ for a desired wave

eld spatially band-limited
around the expansion center
xc = (1, 0), M = 12.
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(d) Continuous driving function∣∣∣D̊c,ν(ω)
∣∣∣ for a desired wave

eld spatially band-limited
around the expansion center
xc = (1, π

4
), M = 12.

Fig. 2. Absolute values of the Fourier coef cients with respect to the
expansion around the origin of the global coordinate system. The
black dotted lines indicate the interval of one spectral repetition due
to spatial sampling. kr0 = 50 corresponds to f ≈ 2700 Hz.

4.1. Limiting the spatial bandwidth of the desired wave eld
with respect to a given expansion center

The desired wave eld P (x, ω) can be expanded around any arbi-
trary expansion center xc. With (4) and (5) and when P (x, ω) is
bandlimited with bandwidth 2M + 1 around xc, this expansion is
given by

PM (x, ω) =

M∑
μ=−M

P̆μ(ω)Jμ

(ω

c
r′
)

ejμα′
. (11)

r′ and α′ denote the position coordinates with respect to a local co-
ordinate system whose origin is at xc and whose axes are parallel to
those of the global coordinate system in r and α. Refer to gure 1.
Note that r′ = r′(x) and α′ = α′(x).
However, for the calculation of the driving function (10) we require
the coef cients P̆ν(ω) with respect to the expansion around the ori-
gin of the global coordinate system. We therefore introduce the ad-
dition theorem for cylinder harmonics [9] into (11) to yield

PM (x, ω) =

∞∑
ν=−∞

Jν

(ω

c
r
)

ejνα×

×
M∑

μ=−M

P̆μ(ω)Jν−μ

(ω

c
rc

)
e−j(ν−μ)αc

︸ ︷︷ ︸
=P̆ν,M (ω)

. (12)

For plane waves P̆μ(ω) = j−μe−jμθpw .
To reproduce PM (x, ω), the expansion coef cients P̆ν,M (ω) are in-
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troduced into (10). Therefore, two spatial bandlimitations are appar-
ent:
(A) PM (x, ω) is bandlimited with respect to an expansion around
xc. The bandlimit is denoted by M . From (12) it can be deduced
that PM (x, ω) nevertheless exhibits in nite spatial bandwidth with
respect to an expansion around the coordinate origin.
(B) The driving function DN (α, ω) (equation (10)) is bandlimited
with respect to an expansion around the coordinate origin. The ban-
dlimit is denoted by N . The desired component of the reproduced
wave eld is bandlimited in both senses.
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(a) Conventional approach.
fpw = 1000 Hz. The spatial
bandlimit is N = 27.
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(b) Conventional approach.
fpw = 2000 Hz. The spatial
bandlimit is N = 27.
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(c) fpw = 2000 Hz. Presented
approach with expansion center
xc = (1, 0). The spatial
bandlimits are N = 56 and
M = 12.
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Fig. 3. Wave elds reproduced by a circular distribution of L = 56
discrete loudspeakers and with radius r0 = 1.5 m reproducing a
plane wave with propagation direction θpw = 3π

2
. The marks indi-

cate the positions of the secondary sources.

4.2. Spatial aliasing properties

The spatial bandwidth limitation introduced in section 4.1 leads to
favorable spatial aliasing properties as described in this section.
In gures 2(c) and 2(d) it can be seen that the energy of the angu-
lar spectrum D̊c,ν(ω) of the continuous proposed driving function is
distributed such that either (I) the spectral repetitions due to spatial
sampling overlap only in regions of low energy (refer to gures 2(c)
and 3(c)) or (II) the overlaps of the spectral repetitions do not lead
to interference of high energy components (refer to gures 2(d) and
3(d)). This enables the application of a driving function (10) with
a bandlimit N signi cantly higher than N = L−1

2
in the conven-

tional approach and therefore leads to a higher spatial bandwidth of
the desired component of the reproduced wave eld with only a little
amount of aliasing. Two examples of the application of the proposed
driving function are shown in gures 3(c) and 3(d). It can be seen
that sweet spots form around the expansion centers xc marked by the
small circles. Outside the sweet spots strong deviations from the de-
sired wave eld arise. Like in the conventional approach, the sweet
spots get smaller with increasing temporal frequency of the repro-
duced wave eld.

When comparing gures 3(c) and 3(d) to the application of the con-
ventional driving function illustrated in gure 3(b), it can be seen
that due to the wider bandwidth of the driving function, the proposed
approach indeed enables the reproduction of the desired wave eld
in locations where the conventional approach fails to do so. The re-
production can thus be optimized with respect to a given - potentially
dynamic - target area.

5. CONCLUSIONS

In this paper we presented an analytical approach to sound eld re-
production with a movable sweet spot. Conventional analytical ap-
proaches inherently exhibit a static sweet spot in the center of the
secondary source distribution. The farther away the receiver is from
the center of the secondary source distribution, the less accurate is
the desired component of the reproduced wave eld and the more
spatial aliasing artifacts are present.
When the wave eld to be reproduced is spatially bandlimited with
respect to the expansion around an arbitrary point inside the sec-
ondary source distribution, then the spatial bandwidth of the sec-
ondary source driving function can be signi cantly higher than in
the conventional approach while spatial aliasing is still kept low. As
a consequence, the desired wave eld can be reproduced in locations
where the conventional approach fails to do so. A sweet spot both in
terms of accuracy of the desired component of the reproduced wave
eld as well as in terms of spatial aliasing artifacts is created around

the expansion center with respect to which the wave eld to be re-
produced is bandlimited. Inside this sweet spot the reproduction is
signi cantly more accurate than in the conventional approach. Out-
side the sweet spot the reproduced wave eld can deviate strongly
from the desired one. This is the case for both the conventional as
well as for the proposed approach.
It could not be clari ed within the scope of this paper, how well the
presented approach performs in terms of accuracy compared to nu-
merical methods like [1]. However, its entirely analytical character
suggests that it is signi cantly bene cial in terms of computational
complexity. Furthermore, it allows for an analytical investigation of
the properties of the actual reproduced wave eld. The general phys-
ical limitations of the involved loudspeaker setups can be determined
no matter if the latter are driven by analytical or numerical methods.
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