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ABSTRACT

The paper concerns active control of impulsive noise. The

most famous filtered-x least mean square (FxLMS) algorithm

for active noise control (ANC) systems is based on the min-

imization of variance of error signal. The impulsive noise

can be modeled using non-Gaussian stable process for which

second order moments do not exist. The FxLMS algorithm,

therefore, becomes unstable for the impulsive noise. Among

the existing algorithms for ANC of impulsive noise, one is

based on the minimizing least mean p-power (LMP) of the er-

ror signal, resulting in FxLMP algorithm. The other is based

on modifying; on the basis of statistical properties; the refer-

ence signal in the update equation of the FxLMS algorithm.

In this paper, the proposed algorithm is a modification and

combination of these two approaches. Extensive simulations

are carried out, which demonstrate the effectiveness of the

proposed algorithm. It achieves the best performance among

the existing algorithms, and at the same computational com-

plexity as that of FxLMP algorithm.

Index Terms— Active noise control, FxLMS algorithm,

impulse noise, stable processes, FxLMP algorithm

1. INTRODUCTION

Active noise control (ANC) is based on the principle of

destructive interference between acoustic waves [1]. Essen-

tially, the primary noise is cancelled around the location of the

error microphone by generating and combining an antiphase

canceling noise [2]. As shown in Fig.1, a single-channel feed-

forward ANC system comprises one reference sensor to pick

up the reference noise x(n), one canceling loudspeaker to

propagate the canceling signal y(n) generated by an adaptive

filter W (z), and one error microphone to pick up the residual

noise e(n). The most famous adaptation algorithm for ANC

systems is the filtered-x LMS (FxLMS) algorithm [3], which

is a modified version of the LMS algorithm [4]. Here the ref-

erence signal x(n) is filtered through a model of the so-called

secondary path S(z), following the adaptive filter, and hence

the name filtered-x algorithm. The FxLMS algorithm is a

Fig. 1. Block diagram of FxLMS algorithm based single-

channel feedforward ANC systems.

popular ANC algorithm due to its robust performance, low

computational complexity and ease of implementation [3].

Over the past few decades a great progress has been made

in ANC, yet the practical applications are limited. One im-

portant challenge comes the control of impulsive noise. In

practice, the impulsive noises are often due to the occurrence

of noise disturbance with low probability but large amplitude.

An impulsive noise can be modeled by stable non-Gaussian

distribution [5]. We consider impulse noise with symmetric

α-stable (SαS) distribution f(x) having characteristic func-

tion of the form [5]

ϕ(t) = e−γ|t|α (1)

where 0 < α < 2 is the shape parameter called as charac-

teristics exponent, and γ > 0 is the scale parameter called as

dispersion. If a stable random variable has a small value for

α, then distribution has a very heavy tail, i.e., it is likely to ob-

serve values of random variable which are far from its central

location. For α = 2 it is Gaussian distribution, and for α = 1
it is the Cauchy distribution. An SαS distribution is called

standard if γ = 1. In this paper, we consider ANC of impul-

sive noise with standard SαS distribution, i.e., 0 < α < 2 and

γ = 1.

For stable distributions, the moments only exist for the

order less than the characteristic exponent [5], and hence the

mean-square-error criterion, which is bases for FxLMS algo-

rithm, is not an adequate optimization criterion. Thus FxLMS
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algorithm may become unstable, when the primary noise is

impulsive. There has been little research on active control

of impulsive noise, at least up to the best knowledge of au-

thors. In practice the impulsive noises do exist and it is of

great meaning to study its control. In [6] a simplified variant

of FxLMS algorithm has been proposed for ANC of impul-

sive noise. The basic idea is here to ignore the samples of the

reference signal x(n) if its amplitude is above a certain value

set by its statistics. As compared with the FxLMS algorithm,

this algorithm gives stable and robust performance. However,

its performance is very poor for small values of α.

In [7], the filtered-x least mean p-power algorithm (FxLMP)

has been proposed, which is based on minimizing a fractional

lower order moment (p-power of error) that does exist for

stable distributions. It has been shown that FxLMP algorithm

with p < α shows better robustness to ANC of impulsive

noise. In this paper, we modify this algorithm to get im-

proved performance for ANC of impulse noise. We see that

for almost same computational load, a better robustness and

stable performance is achieved. Extensive simulations are

carried out which demonstrate the effectiveness of the pro-

posed method.

The rest of the paper is organized as follows. Section II

describes the Sun’s algorithm [6] and FxLMP algorithm [7],

in comparison with FxLMS algorithm. Section III describes

the proposed algorithm. Simulation results are discussed in

Section IV, and concluding remarks are given in Section V.

2. EXISTING ALGORITHMS

2.1. Filtered-x Least Mean Square (FxLMS) Algorithm

The block diagram of FxLMS algorithm based single-channel

feedforward ANC is shown in Fig. 1. Assuming that W (z)
is an FIR filter of tap-weight length L, the secondary signal

y(n) is expressed as

y(n) = wwwT (n)xxx(n). (2)

where www = [w0(n), w1(n), · · · , wL−1(n)]T is the tap-weight

vector, and xxx(n) = [x(n), x(n − 1), · · · , x(n − L + 1)]T is

an L sample reference signal vector. The residual error signal

e(n) is given as

e(n) = d(n) − y′(n) (3)

where d(n) = p(n) ∗ x(n) is the primary disturbance sig-

nal, y′(n) = s(n) ∗ y(n) is the secondary canceling signal,

∗ denotes linear convolution and p(n) and s(n) are impulse

responses of the primary path P (z) and secondary path S(z),
respectively. Minimizing the mean square error cost function;

J(n) = E{e2(n)} ≈ e2(n), where E{.} is the expectation

operator; the FxLMS algorithm [3] is given as

www(n + 1) = www(n) + μe(n)[ŝ(n) ∗ xxx(n)] (4)

where μ is the step size parameter, and ŝ(n) is impulse re-

sponse of the secondary path modeling filter Ŝ(z).
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Fig. 2. The PDFs of standard symmetric α-stable (SαS) pro-

cess for various values of α.

Fig. 3. Transformation for (a) reference signal in Sun’s algo-

rithm, (b) reference signal in proposed method, and (c) error

signal in proposed method.

2.2. Sun’s (Modified FxLMS) Algorithm [6]

In the update equation of FxLMS algorithm (4), the reference

signal vector is the same as that used in generating cancel-

ing signal y(n) in (2), and is given as xxx(n) = [x(n), x(n −
1), · · · , x(n−L + 1)]T . This shows that in the FxLMS algo-

rithm, the reference signal x(n) at different time are treated

“equally”. It may cause the FxLMS algorithm to become un-

stable in the presence of impulsive noise. To overcome this

problem, the samples of the reference signal x(n) are ignored,

if its magnitude is above a certain threshold set by statistics

of the signal. Thus in (4), the reference signal is modified as

x′(n) =
{

x(n), if x(n) ∈ [c1, c2]
0, otherwise

(5)

In practice c1 and c2 can be obtained offline for ANC systems.

Effectively, this algorithm assumes the same PDF for x′(n)
with in [c1, c2] as that of x(n), and simply neglects the tail

beyond [c1, c2]. The transformation between x(n) and x′(n)
is shown in Fig. 3(a). Hereafter this algorithm is referred as

Sun’s algorithm [6], and is given as

www(n + 1) = www(n) + μe(n)[ŝ(n) ∗ xxx′(n)] (6)

Our simulations show that this algorithm becomes unstable

for α < 1.5 when the PDF is peaky and reference noise is

highly impulsive.
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2.3. Filtered-x Least Mean p-Power (FxLMP) Algorithm
[7]

As stated earlier, for an SαS process with α < 2, only mo-

ments of order less than α are finite. Since in these cases

the variance is not finite [8], the minimum mean squared er-

ror criterion is not an appropriate objective for adaptive fil-

tering. Instead the minimum dispersion serves as a measure

of optimality is stable signal processing. The dispersion is a

parameter of SαS process which plays a similar role to the

variance in the Gaussian process. It is shown in [5] that min-

imizing dispersion is equivalent to minimizing a fractional

lower order moment of the residual error, E{|e(n)|p}, for

p < α. For some 0 < p < α, minimizing the pth mo-

ment E{|e(n)|p} ≈ |e(n)|p, the stochastic gradient method

to update W (z) is given as [7]

www(n+1) = www(n)+μp|e(n)|p−1sgn(e(n))[ŝ(n)∗xxx(n)] (7)

where

sgn(e(n)) =

⎧⎨
⎩

1, e(n) > 0
0, e(n) = 0

−1, e(n) < 0.
(8)

This is FxLMP algorithm, which is LMP generalization of the

FxLMS algorithm. It reduces to FxLMS when p = 2. It has

been concluded in [7] that p as close as possible to α gives the

fastest convergence, with a natural upper bound being p < α,

since the moment does not exist for the larger values.

3. PROPOSED ALGORITHM

The proposed algorithm is a modified version of that proposed

in [7], and modification is based on our extensive computer

simulations. We have observed that:

• Both FxLMP and Sun’s algorithm may become unsta-

ble due to very impulsive nature of the reference noise.

• The FxLMP algorithm shows better robustness than

Sun’s modified FxLMS algorithm.

• The error signal is also impulsive in nature, and may

cause the ANC system to become unstable.

On the basis of these observations, we suggest two modifi-

cation to the FxLMP algorithm. Inspired by the idea in Sun’s

algorithm, the first modification is to truncate the reference

signal value if it exceeds the threshold value. This increases

the robustness of the algorithm as will be demonstrated by the

simulation results. Thus the reference signal is modified as

x′′(n) =

⎧⎨
⎩

c1, x(n) ≤ c1

c2, x(n) ≥ c2

x(n), otherwise

(9)

The second modification is based on fact that ignoring [as

in (5) in Sun’s algorithm] or clipping [as in (9) in Proposed
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Fig. 4. Magnitude response of acoustic paths used in com-

puter simulations.

algorithm] the peaky samples in the update of adaptive algo-

rithm does not mean that these samples will not appear in the

residual error e(n). The residual error may still be so peaky,

that in the worst case might cause ANC to become unstable.

We extend the idea of (9) to the error signal e(n) as well, and

a new error signal is obtained as

e′′(n) =

⎧⎨
⎩

c1, e(n) ≤ c1

c2, e(n) ≥ c2

e(n), otherwise

(10)

and proposed modified FxLMP algorithm for ANC of impulse

noise is as given below

www(n + 1) = www(n) + μp|e′′|p−1sgn(e′′)[ŝ(n) ∗ xxx′′(n)] (11)

The transformation resulting from (9) and (10) are shown in

Fig. 3. It is worth mentioning that, the proposed method

has almost the same computational complexity as that of the

FxLMP algorithm.

4. COMPUTER SIMULATIONS

This section provides the simulation results to verify the ef-

fectiveness of the proposed algorithm in comparison with the

FxLMP algorithm and Sun’s algorithm. The acoustic paths

are modeled using data provided in the disk attached with [3].

Using this data P (z) and S(z) are modeled as FIR filter of

length 256 and 128 respectively. The magnitude response of

the acoustic paths is given in Fig. 4. It is assumed that the

secondary path modeling filter Ŝ(z) is exactly identified as

S(z). The ANC filter W (z) is selected as an FIR filter of tap-

weight length 192. The performance comparison is done on

the basis of noise reduction as defined below:

NR(n) =
Ae(n)
Ad(n)

, (12)

where Ae(n) and Ad(n) are estimates of absolute values of

residual error signal e(n) and disturbance signal d(n) at the

location of error microphone. These estimates are obtained

using lowpass estimators as below:
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Fig. 5. Curves for noise reduction (NR) averaged over 25

realizations for each value of step-size shown in legend. (a)

FxLMS, (b) FxLMP, (c) Sun’s and (d) proposed algorithm.

Ae(n) = λAe(n − 1) + (1 − λ)|e(n)|, (13)

Ad(n) = λAd(n − 1) + (1 − λ)|d(n)|, (14)

where λ is the forgetting factor (0.9 < λ < 1), and | · | is the

absolute value of quantity.

The reference noise signal x(n) is modeled by standard

SαS process with α = 1.5. Extensive simulations are carried

out to demonstrate the performance of various algorithms.

The threshold parameters c1 and c2 are selected as 0.1 and

99.9 percentile of x(n), respectively. For each algorithm a

variety of step-size is tried. The simulation results are pre-

sented in Fig. 5, 6, where each curve is obtained by averaging

over 25 realizations.

Figs. 5(a)–(d) show curves for noise reduction (as de-

fined in (12)) for FxLMS algorithm, FxLMP algorithm, Sun’s
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Fig. 6. Curves for noise reduction (NR) averaged over 25

realizations for various algorithms.

algorithm and proposed algorithm, respectively. From these

simulation results, we observe that the FxLMS algorithm is

unstable, even for a very small value of step-size parameter.

The FxLMP and Sun’s algorithm give stable performance for

small values of step-size. Their performance, however, de-

grades for large values of step-size. Nevertheless, the FxLMP

algorithm shows better robustness as compared with Sun’s al-

gorithm. The proposed algorithm is the only one which gives

stable performance for all realizations of the process. The

proposed modification allows selection of a somewhat larger

step-size, and hence faster convergence can be achieved. Fig.

6 shows comparison of various algorithm with the best corre-

sponding results. It clearly demonstrates the superior perfor-

mance of the proposed algorithm.

5. CONCLUDING REMARKS

In this paper we have presented new results for ANC of im-

pulsive noise. We have extended the idea of modified FxLMS

algorithm given in [6], and have combined it with the FxLMP

algorithm [7]. The extensive computer simulations are car-

ried out, which confirm that proposed algorithm is more ro-

bust than the existing algorithms. It gives best performance

among the algorithms considered in this paper, in terms of

both convergence speed and stability.
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