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ABSTRACT

This paper presents a new approach to rejection of sinusoidal
disturbances acting at the output of a discrete-time complex-
valued linear stable plant (e.g. acoustic channel) with un-
known and possibly time-varying dynamics. It is assumed
that the instantaneous frequency of the sinusoidal disturbance
may be slowly varying with time and that the output signal is
contaminated with wideband measurement noise. It is not as-
sumed that a reference signal, correlated with the disturbance,
is available. The proposed disturbance rejection algorithm au-
tomatically adjusts its adaptation gains to the rate of system
and/or disturbance variation.

Index Terms— Adaptive filtering, active vibration control,
active noise control.

1. INTRODUCTION

Consider the problem of eliminating a narrow-band distur-
bance acting at the output of a discrete-time complex-valued
system governed by

y(t) = Ko(g™Mu(t — 1) +d(t) +v(t) M

where t = ..., —1,0,1,... denotes normalized (dimension-
less) time, ¢! is the backward shift operator, y(#) denotes the
corrupted complex-valued system output, K,(g~") is an un-
known transfer function of a linear single-input single-output
stable plant (e.g. acoustic channel) with a nonzero gain in the
entire frequency range: K,(e=9%) # 0, Yw € [—7, 7], d(t)
denotes a nonstationary narrow-band disturbance, v(t) is a
complex-valued zero-mean circular white noise with variance
02, and u(t) denotes the input signal.

We will look for the minimum-variance feedback controller,
i.e., for a control rule that minimizes the system output in the
mean-squaxred sense: E[ | y(t) |? | — min. We assume that
no reference signal is available. This makes the task of distur-
bance rejection more difficult, as application of feedforward
compensation technique is, in such a case, not possible.
Practically important, the problem of vibration control has at-
tracted a great deal of attention in recent years [1], [2]. It
was solved by many authors using different approaches, such
as filtered-X LMS (FXLMS) compensation, internal model
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principle, or phase-locked loop — for references see [3]. In
all contributions made so far, adaptation gains, which decide
upon tracking capabilities of the underlying disturbance rejec-
tion schemes, have to be tuned “manually”. To the best of our
knowledge the solution proposed below it is the first adaptive
vibration controller with self-optimization capability.

2. ADAPTIVE FEEDBACK CONTROLLER

2.1. Control algorithm

The control algorithm that will serve as a basis for our fur-
ther considerations is an extended version of the algorithm
proposed in [3] for elimination of narrow-band disturbances
with a constant-known frequency wo: d(t) = a(t)e’“ot. That
algorithm can be summarized as follows

d(t+1]t) = e [d(t|t — 1) + py(t)]
u(t) = d(t ;Ci—n1|t)

2
where k,, = K,,L(e_j «0) denotes the nominal (assumed) plant
gain and p is an adaptation constant, and is based on the fol-
lowing simple premises. First, it is clear that in order to cancel
a sinusoidal disturbance at the output of a linear plant, the ap-
plied control signal u(t) should be also sinusoidal. Since lin-
ear systems basically scale and shift sinusoidal input signals,
the nominal steady-state response of the plant to such excita-
tion can be written in the form K., (¢~ Du(t—1) = k,u(t—1),
leading to the following “idealized” minimum-variance can-
cellation rule

u(t) = - ()

which requires perfect knowledge of the disturbance. When
the signal d(t) is not measurable, which we assume here, one
can replace d(t + 1) in (3) with its one-step-ahead prediction
c?(t + 1] t), based on the available input-output data. In [3]
we have shown that when the assumed plant gain k,, coin-
cides with the true plant gain k, = K,(e~7“?), and when the
complex-valued “amplitude” a(t) of d(t) drifts according to
the random-walk model, one can choose the real-valued adap-
tation gain y in (2) in such a way that the closed-loop system
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reaches, under Gaussian assumptions, the Cramér-Rao type
lower cancellation bound, i.e., it becomes a statistically effi-
cient disturbance rejection scheme. Even though efficiency is
lost in the presence of modeling errors, where k,/k, # 1,
it can be regained by equipping controller (2) with an ex-
tra adaptation mechanism for automatic tuning of a complex-
valued gain 1. Both theoretical analysis and simulation exper-
iments show that such extended control algorithm converges
in mean to the optimum (minimum-variance) regulator [3].
This means that, in the case considered, modeling errors are
compensated by feedback.

When deriving a disturbance rejection scheme capable of elim-
inating signals with a time-varying frequency we will follow
the lines of [3]. As a starting point of our analysis, consider
the following generalized version of (2)

At +1]t) = D[] - 1) + uy(t))
- ~ dt+1t)
wit+1t)=(1—nw(t|lt—1)+narg | =—

(t+1]1) = (1 =no(t[t - 1) 1)
d(t+1]t)

kn

which incorporates frequency tracking. In the above algo-
rithm, p (0 < p < 1) denotes a small gain that controls the

rate of amplitude adaptation, and 7 (0 < 7 < 1) is another
gain, which that controls the rate of frequency adaptation.

u(t) = — “)

2.2. Tracking properties

To derive analytical results, we will assume that the distur-
bance is governed by

dt) = e dt —1), wt)=wt—1)+w) (&)

where {w(t)} denotes a real-valued zero-mean white noise
sequence with variance o2, independent of {v(t)}. Accord-
ing to (5), d(t) is a constant-modulus cisoid with unknown
magnitude b = | d(¢)| and randomly drifting frequency w(t).
Our approach will be based on averaging. Consider a local
analysis window T' = [t1, t2], covering n = to—t1+1 consec-
utive time instants (n > 27 /w(t),Vt € T). If K,(e77%) is
a smooth function of w, and if the instantaneous frequency of
the disturbance changes sufficiently slowly with time, the true
response of the plant to the narrow-band excitation w(t) can
be approximated as K,(¢ u(t — 1) = kru(t — 1), t € T,
where kp = 3, Ko(e77(®)) /n denotes the average plant
gain over the interval 7. Using this approximation, one can
express plant output in the form

~

y(t) = d(t) — pd(t]t — 1) +o(t), t€T  (6)
where 3 = kr/k,, — the ratio of the average plant gain to the
nominal (assumed) gain — denotes the local modeling error.

In our local analysis, 3 will be regarded as a time-invariant
quantity.
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Denote the cancellation error by Ad(t) = d(t) —Bd(t|t—1),
and the one-step-ahead frequency prediction error by Aw(t) =
w(t) — &(t|t — 1). To establish dependence of Aof(t) and
A®(t) on v(t) and w(t), one can employ the approximat-
ing linear filter (ALF) technique, proposed by Tichavsky and
Héndel [4], for the purpose of analysing adaptive notch filters.
Using this approach (see [4] for more details), one arrives at
the following small-gain approximations:

AZ(t) = (1 — uB)AZ(t) + > AD(t — 1) — pBz(t — 1)

AD(t+1) = AB(E) — b% Im[uBAZ(t)] — b% Tm[p32(t)]

+w(t+1) (7

where AZ(t) = Ag(t)d*(t) and z(t) = v(t)d*(t). Note that
{z(t)} is a circular white noise with variance o2 = b?02.
Suppose, that there are no modeling errors (6 = 1) and that
both i and n take the values from the interval (0,1). Then,
in the case considered, equations (7) allow one to derive the
following expression for the steady-state mean-squared fre-
quency estimation error

2
E[(AG(1))%] = TE o2+ [ + ] o2 . (®)
452

Denote by 1., and 7, the values of p and 7 that minimize the
error (8). It is straightforward to check that p,, = /8¢, n, =
{/€/2, where ¢ = b?02 /o2 is a scalar coefficient that can be
regarded a measure of nonstationarity of a signal governed by
(5).

Under Gaussian assumptions imposed on {v(¢)} and {w(t)}
the lower frequency tracking bound, often called posterior
Cramér-Rao bound (PCRB), was established in [5]

PCRB = 02 /2671 . 9)

Note that E[(AG(#))?| ftw, 1] = 02 /21, which is iden-
tical to (9). Hence, despite its simplicity, in the absence of
modeling errors the optimally tuned algorithm (4) is a sta-
tistically efficient scheme for tracking of randomly drifting
instantaneous frequency.

3. SELF-OPTIMIZING CONTROLLER

Even though we have been assuming so far that the adapta-
tion gain y is a real-valued quantity, the derivation of approx-
imating linear equations is not restricted to this case — equa-
tions (7) remain valid also for complex-valued gains p €C.
When the true plant characteristics are not known, i.e., when
B # 1, incorporation of a complex-valued gain has some
obvious advantages as it allows one to compensate model-
ing error. Actually, according to (7), when p is chosen so
that u8 = p, > 0 (which can be achieved provided that
Im[uf] = 0, i.e., arg[u] = —arg[[] ), the control algorithm
(4) with a complex-valued gain, used in in the presence of



modeling errors (6 # 1), should yield the same results as
the same algorithm equipped with a real-valued adaptation
gain L, operated in the absence of modeling errors (3 = 1).
In particular, when p is set to p,, /(5 and 7 is set to 7, the
closed-loop system will guarantee statistically efficient fre-
quency tracking.

Since in practice 5 and £ are unknown quantities, we will
propose a special mechanism for automatic adjustment of p
and 7. Generally, we would like to adjust both adaptation
gains so as to minimize the mean-squared value of the output
signal E[|y(t; 1,n)|?]. To avoid problems with mixed opti-
mization (joint optimization of a complex-valued gain ;2 and
a real-valued gain 7)), we will design two separate loops for
adjustment of . and 7, respectively.

3.1. Adjustment of 1

Consider the following local measure of fit, made up of expo-
nentially weighted system outputs [the output signal y(t) is
regarded here as a function of y]

V() =Y (o) lu(m )l - (10)

T=1

The forgetting constant p,, (0 < p, < 1) determines the
effective averaging range. To evaluate the estimate i(t) =
argmin, V'(¢; 1), we will use the recursive prediction error
approach [6]

_ OV(a(t—1))/op”
PV (t;a(t —1))/0pop

filt) = it — 1) (1)
where 0/0p and 9/0u* denote operations of symbolic dif-
ferentiation used in the so-called Wirtinger (or CR) calculus,
applicable to nonanalytic functions, such as (10) — see [6].
Using Wirtinger calculus one arrives at
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ad(t +1|t)

OBt t—1) ~
j et —1)

= 5 d(t+1]t)
Sl |Odtt—1) oyt
jo(t|t—1)
+ e [ o +u o
ot+1lt) . R(tt—1)
L an [ @+ 110/op) (@d(t]t = 1)/op")”
2 d*(t+1|t) d*(t|t —1)

gn | odit+1]6)/ou  dd(t[t—1)/0pu
2 d(t+1]t) dit|t —1) '

3.2. Adjustment of 7

Consider another exponentially weighted measure of fit
1 : t—1 2
Witin) =5 > o) Ly(rsm)] (12)
T=1
where p,, (0 < p, < 1) denotes another forgetting constant
and y(¢) is now regarded a function of 7. Using the RPE
approach one arrives at the following recursive scheme for
evaluation of 7)(¢) = arg min,, W (¢; 1)
oW (t;7(t —1))/0n

M= G e )

(13)

where

%;t—l» ~ Re {y(t;mt - 1))

PWEAE 1) _  PW(H - 2)

on? = Pn on?

dy* (t;n(t — 1))}
on

Ayt 7t — 1)) |?

- ‘ on

dy(t) _ ad(t|t—1)

on an

od(t +11t) _ 0Bt =1) 5,

on on
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n
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=~ =

d(t +1]t) dt|t—1)



3.3. Coping with modeling error

Since the quantities 0y(t)/dp, Oy(t)/Op* and y(t)/On de-
pend explicitly on the modeling error 3, which is unknown,
the recursive formulas for evaluation of sensitivity derivatives,
derived above, can’t be used in their present form. Following
[3], we will replace /3 in the recursions mentioned above with

B=culp (14)

where c,, denotes a small positive constant. As shown in [3],
in the constant-known frequency case such gain fixing tech-
nique guarantees convergence in mean of the adaptive dis-
turbance rejection scheme to the optimal solution in spite of
modeling errors. Simulation experiments confirm that similar
effect can be observed when (14) is used in combination with
the self-optimizing control algorithm described in the previ-
ous subsections.

4. EXPERIMENTAL RESULTS

Figure 1 shows the results of a real-world active noise control
experiment conducted using the proposed regulator. Since
the algorithm was operated in a real-valued environment, the
measured signal y(t) was treated as a sequence of complex
numbers (yr(t) = y(t), yr(t) = 0). Then, after computing
the complex-valued signal u(t) = ug(t) + jur(t), only its
real part ug(t) was used for control purposes.

The instantaneous frequency of artificially generated distur-
bance was changing sinusoidally between 241 and 250 Hz,
with a period of 20s. The error microphone was located ap-
proximately 1 m away from the source of disturbance and 15
cm from the noise canceling loudspeaker.

The system was operated at a sampling rate of 1 kHz. The
nominal filter gain k,, was set to 1. The remaining parameters
were chosen as follows: ¢, = 0.01, p,, = 0.999, p,, = 0.99.
To avoid erratic behavior of the algorithm during startup/tran-
sient periods, the maximum allowable values for | zi(¢)| and
7(t), were set to 0.05 and 0.01, respectively. After an ini-
tial convergence phase, which lasted for about one second,
the closed-loop system reached its steady-state behavior. The
achieved rate of disturbance attenuation was approximately
equal to 20 dB.

5. CONCLUSION

The problem of eliminating a sinusoidal disturbance of un-
known, slowly time-varying frequency, acting at the output of
an unknown (and possibly slowly time-varying) linear stable
plant, was considered. The adaptive feedback disturbance re-
jection scheme, proposed in this paper, consists of two loops:
the inner control loop, which predicts and cancels the distur-
bance, and the outer, self-optimization loop, which automat-
ically adjusts adaptation gains to the rate of system and dis-
turbance nonstationarity. Experimental results confirm good
rejection/tracking properties of the derived algorithm.
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Fig. 1. Power spectral density of the signal before and after
disturbance cancellation (top figure) and the corresponding
measurements (two lower figures).
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