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ABSTRACT

In most real-world situations, a single microphone is insuffi-

cient for the characterization of an entire auditory scene. This

often occurs in places such as office environments which con-

sist of several interconnected spaces that are at least partially

acoustically isolated from one another. To this end, we ex-

tend our previous work on segmentation of natural sounds to

perform scene characterization using a sparse array of micro-

phones, strategically placed to ensure that all parts of the en-

vironment are within range of at least one microphone. By ac-

counting for which microphones are active for a given sound

event, we perform a multi-channel segmentation that captures

sound events occurring in any part of the space. The segmen-

tation is inferred from a custom dynamic Bayesian network

(DBN) that models how event boundaries influence changes

in audio features. Example recordings illustrate the utility of

our approach in a noisy office environment.

Index Terms— Acoustic signal analysis, Acoustic signal

detection, Bayes procedures, Acoustic arrays.

1. INTRODUCTION

Understanding the acoustic scene in fixed spaces has assisted

researchers in diverse fields such as ecology [1], surveil-

lance [2], and personal media archives [3]. These recordings

are often continuously captured over days or weeks by mi-

crophones left in the space or carried on a person. However,

the amount of information contained in most continuous

recordings calls for automated solutions that allow users to

determine what type of sound events are present and where

they occur. Thus, segmentation and indexing remain impor-

tant technical challenges, especially for the difficult and often

ignored classes of natural and environmental sounds.

Regarding segmentation our goal is to identify individual

sound events (source separation is not currently considered)

along with their onset and end times. In our definition of a

sound event we follow the auditory stream concept [4] where

an event is perceptually equivalent to the sound emanating

from a single physical source, thus, a footstep event would

consist of a cluster of footstep sounds rather than individual

footsteps. Although the majority of past research in audio

segmentation has focused on speech [5] and music [6], several

approaches for temporally isolating sound events from con-

tinuously recorded environments have recently appeared [3,

2, 7, 8]. All of these event-based segmentation approaches

are single-channel, using a single microphone placed some-

where in the space. Many spaces such as office environments,

however, are large enough that sounds originating in one part

of the space may not be perceptible in another, or may be per-

ceptible only at low SNR. In this paper, we extend our own

previous work on environmental sound segmentation [8] to

the multi-channel case where sound is continuously recorded

using a microphone array distributed throughout the space.

We begin the explanation of our multi-channel segmenta-

tion algorithm by reviewing the acoustic features that form the

basis of the algorithm in Section 2. By monitoring changes in

these features our method jointly infers onsets and end times

of the most prominent sound events in the space along with

the active subset of microphones responsible for capturing

each event. This method utilizes a custom dynamic Bayesian

network (DBN) that models how event boundaries influence

changes in audio features, which will be detailed in Section

3. An illustrative example recorded with five microphones in

an office environment is shown in Section 4, along with seg-

mentation results in additive noise. Finally, conclusions and

future work are provided in Section 5.

2. AUDIO FEATURE EXTRACTION

The audio features used as input to the DBN segmenta-

tion algorithm were chosen to represent a large variety of

sounds without specifically assuming particular categories

(e.g., speech, music). In this work we use combinations of

the following features: RMS level, Bark-weighted spectral
centroid, spectral sparsity (the ratio of �∞ and �1 norms

calculated over the short-time Fourier Transform (STFT)

magnitude spectrum), transient index (the �2 norm of the

MFCC difference between consecutive frames), temporal
sparsity (the ratio of �∞ and �1 norms calculated over all

short-term RMS levels computed in a one second interval),
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and harmonicity (a probabilistic measure of whether or not

the STFT spectrum exhibits a harmonic frequency structure).

These features are computed either directly from windowed

time series data, via STFT using overlapping 40ms Hamming

windows hopped every 20ms, or using a sliding “super frame”

to combine data from multiple 40ms frames. A description of

how all features are computed can be found in [8].

3. MULTI-CHANNEL SEGMENTATION

Let t ∈ 1 : T be the frame index, K the number of features

extracted from each frame of the signal, and N the number

of microphones. The multi-channel DBN model begins with

the global mode, Mt, which is shared by all features and mi-

crophones. The three values Mt can take are ∅, O1, and C1
meaning there is no sound event, the onset of a new sound

event, and the continuation of a sound event between con-

tiguous frames, respectively. We define the time-varying N -

dimensional active subset vector At, whose elements At,n ∈
{0, 1} indicate whether microphone n is active at frame t. The

active subset At can take 2N possible values, one for each

possible combination of active/inactive microphones. If there

are acoustically isolated microphones, and several acousti-

cally isolated events occur simultaneously, only the sound

with the highest SNR will be considered active.

Due to the variation in time scales and meaning of the dif-

ferent features, it is possible that certain features lag behind

the global mode Mt when turning on or off. Furthermore,

even if a sound is present at time t, it is likely that some fea-

tures will fail to respond at all. The discrete N -dimensional

vectors μ
(i)
t , for i ∈ 1 : K, serve as feature gating vari-

ables, whose elements μ
(i)
t,n ∈ {∅, O1, C1} are constrained

by the active subset. For instance, suppose N = 3 and At =
[1, 0, 1]T ; then μ

(i)
t ∈ {[∅, ∅, ∅]T , [O1, ∅, O1]T , [C1, ∅, C1]T }.

That is only active microphones can have features that behave

differently from silence.

The observed features Y
(i)
t are N -dimensional vectors,

where the observation of feature i at frame t for the nth mi-

crophone is denoted by Y
(i)
t,n . We also define the hidden states

S
(i)
t,n, which are continuous random variables mediating the

effect of individual features’ onsets/end times on the actual

observations Y
(i)
t,n . The latter are modeled as inherent features

corrupted by noise. The state S
(i)
t,n is then composed of this

inherent feature plus an auxiliary variable enabling S
(i)
t,n to be

encoded as a first order Gauss-Markov process in time. The

global mode Mt and active subset vector At are shared by all

features and microphones, while the linear dynamic systems

described by Y
(i)
t,n and S

(i)
t,n are independent over features and

microphones as summarized by the DAG of Figure 1.

3.1. Distributional specifications

We begin with the frame likelihood

P (Y (i)
t,n |S(i)

t,n) ∼ N (v(i)
t,n, R(i)) (1)
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Fig. 1. Directed acyclic graph for generative multi-
channel audio segmentation model.

where v
(i)
t,n is the inherent feature and one component of the

continuous random state vector S
(i)
t,n, i.e., S

(i)
t,n = [u(i)

t,n, v
(i)
t,n]T .

The continuous state variables u
(i)
t,n and v

(i)
t,n satisfy the fol-

lowing stochastic recursive relations

u
(i)
t,n = u

(i)
t−1,n + q

(i)
t (μ(i)

t,n, μ
(i)
t−1,n)

v
(i)
t,n = (1 − α(i))ut,n + α(i)v

(i)
t−1,n (2)

where α(i) is a low-pass filter coefficient, which allows for

rapid but non-instantaneous change of the inherent feature

across segments. Process noise q
(i)
t (μ(i)

t,n, μ
(i)
t−1,n) is dis-

tributed according to

q
(i)
t (μ(i)

t,n, μ
(i)
t−1,n) ∼ N (0, Q(i)(μ(i)

t,n, μ
(i)
t−1,n)). (3)

where Q(i)(μ(i)
t,n, μ

(i)
t−1,n) is a variance, which will be large

during event onset and end times.

Via P (μ(i)
t |μ(i)

t−1, At,Mt,Mt−1), we model possible time

differences (lags) between when a particular feature gate,

μ
(i)
t,n, turns on after Mt has turned on as Poisson. Letting p(i)

lag+

be the probability that the lag will continue for an additional

frame, the expected lag becomes 1/p(i)

lag+. Similarly, we model

possible lags between when a particular gate, μ
(i)
t , turns off

after Mt has turned off as Poisson, with p(i)

lag− as the proba-

bility that the lag will continue for an additional frame. The

dependence on At allows only microphones that are included

in the active subset to have their gate μ
(i)
t,n behave differently

from silence, while all microphones that are included in the

active subset must share the same value for μ
(i)
t,n. A summary

of P (μ(i)
t |μ(i)

t−1, At,Mt, Mt−1) is shown in Table 1.

The temporal dynamics of the active subset At follow

P (At+1|At,Mt+1), which has three distinct forms depend-

ing on Mt+1. When there are no sound events observed by

any of the microphones (Mt+1 = ∅) the active subset will be
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Table 1. Transitions for P (μ(i)
t |μ(i)

t−1, At, Mt,Mt−1).
Mt Mt+1 μ

(i)
t P (μ(i)

t+1 = ∅) P (μ(i)
t+1 = O1) P (μ(i)

t+1 = C1)
∅ ∅ ∅ 1 0 0

∅/O1/C1 ∅ O1/C1 1 − p(i)

lag− 0 p(i)

lag−
∅/O1/C1 O1/C1 ∅ 1 − p(i)

lag+ p(i)

lag+ 0

∅/C1 O1 O1/C1 p(i)

lag+ − (p(i)

lag− · p(i)

lag+) 1 − p(i)

lag+ p(i)

lag− · p(i)

lag+

C1 C1 O1/C1 0 0 1

O1 C1 O1 0 0 1

O1 C1 C1 p(i)

lag+ − (p(i)

lag− · p(i)

lag+) 1 − p(i)

lag+ p(i)

lag− · p(i)

lag+

Table 2. Transition probabilities for P (Mt+1|Mt).
Mt P (Mt+1 = ∅) P (Mt+1 = O1) P (Mt+1 = C1)
∅ 1 − pnew pnew 0

O1 0 0 1

C1 poff(1 − pnew) pnew 1 − poff − pnew + poffpnew

empty with probability one, i.e., P (At+1 = ∅|At,Mt+1 =
∅) = 1. When a sound event continues between consecutive

frames (Mt+1 = CI) the active subset is constrained to be

P (At+1 = At|At,Mt+1 = CI) = 1, i.e., the active subset

must be constant over an entire sound event. Thus, the active

subset only changes during event onsets (Mt+1 = OI).

If a sound event has an onset at time t + 1, the active

subset at time t + 1 is independent of the active subset at

time t, and P (At+1|At, Mt+1 = OI) = P (U), where U ∈
{1, 2, ..., 2N−1} are all the non-empty active subset possi-

bilities. To determine P (U) we first define one active mi-

crophone as the anchor or reference microphone denoted by

γ ∈ {1, .., N} for each non-empty active subset. We can

then write P (U) =
∑

γ P (U |γ)P (γ) where the anchor mi-

crophone is uniformly distributed, i.e., P (γ) = 1/N . The

probability of each possible active subset given an anchor mi-

crophone is

P (U |γ) =
∏

At,n=1

p(n)
on

∏
At,n=0

(1 − p(n)
on ) (4)

where At,n = 1 signifies that the nth microphone is active at

time t, and similarly At,n = 0 signifies inactivity. The proba-

bility that the nth microphone is active p
(n)
on is given by an in-

verse sigmoidal function p
(n)
on = 1

1+exp(aε(n)−b)
where a and b

are parameters controlling the slope and offset of the sigmoid

function, and ε(n) is the Euclidean distance between micro-

phone n and the anchor microphone. By choosing the in-

verse sigmoid model for p
(n)
on we encode the prior knowledge

that only those microphones located close to the anchor mi-

crophone will have a high probability of observing the same

sound event.

Finally, we specify P (Mt+1|Mt) as in Table 2, which

models Poisson onset times and event durations. In Table 2,

pnew is the prior probability of a new onset, while poff is the

prior probability of a sound turning off, given that it is cur-

rently on.

3.2. Inference methodology

Segmentation is achieved by estimating the global mode se-

quence M1:T . Ideally, our estimation criterion should pre-

serve the correct number of segments, and the detected seg-

ment boundaries should be near the true segment locations.
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Fig. 2. Office environment with microphone array posi-
tions and approximate locations of two sound sources.

In order to achieve these goals we choose the maximum-a-

posteriori (MAP) criterion [6],

M̂1:T = arg max
M1:T

P (M1:T |Y (1:K)
1:T ). (5)

Unfortunately, computing the exact MAP estimate requires

exponential-time complexity. A linear-time approximation

nevertheless exists, using an approximate Viterbi inference

scheme [9].

4. PRELIMINARY RESULTS

Our examples were recorded using a five microphone array in

an indoor office environment consisting of two meeting rooms

separated by a hallway (Figure 2). All microphones in the

array had equal elevation, and (x, y) coordinates in inches

of (158, 380), (59, 380), (0, 0), (−104, 97), (61, 138). To test

noise robustness we added white Gaussian noise to the signal

at each microphone at SNR levels between -10dB to 10dB.

Figure 3 displays the time-domain waveforms from each

of the five microphones in the array with 0dB SNR. Addi-

tionally, the global mode sequence M1:T inferred from the

Viterbi algorithm is shown in the bottom panel of Figure 3,

while the inferred active subset variables (At,n) are plotted

below the corresponding channel waveforms. Values when

the global mode is off (Mt = ∅) are plotted as zero, values

when the global mode is on (Mt = C1) are plotted as one,

and onsets (Mt = O1) are plotted as dotted lines. From Fig-

ure 3 three distinct events from this example recording can be

recognized. First, there is the sound of jingling keys (1-5.5

seconds) on channels three, four, and five. Second, there is

a laugh (5.5-6.5 seconds) on channels three, four, and five.

Third, there is a shaking food container (9.5-13 seconds) on

channels one and two. We see that the global mode sequence

in general does a good job of capturing these events in the

presence of additive noise, while the active subset accurately

detects the microphones that are observing the sounds.

In the example of Figure 3 the RMS level, spectral cen-

troid, and spectral sparsity feature sequences extracted from

each of the five channels are used as the DBN observations.

The RMS level takes high values during a sound event, but
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Fig. 3. Signal waveforms for five microphone indoor
recording along with the corresponding active subset vari-
ables At,n, and the global mode sequence M1:T .

has a hard time distinguishing between contiguous events.

The spectral centroid detects only the shaking keys sound,

and the spectral sparsity clearly distinguishes the harmonic

laugh sound, but appears unresponsive to the more noise-like

key shaking and plastic container events. This illustrates the

necessity of using multiple features to detect environmental

sound events, while the fact that the laugh event is captured

as different from the key jingling event demonstrates the im-

provements of the proposed algorithm over a simple level de-

tection segmentation approach.

Next we examine the performance of our algorithm in

additive noise by comparing it to a ground truth (human

annotated) segmentation. We use a histogram distance

metric1 to evaluate the Viterbi algorithm by comparing

the ground truth global mode sequence M1:T to the esti-

mated global mode sequence M̂1:T , as δ(M1:T , M̂1:T ) =√∑3
j=1(hist(j) − ˆhist(j))2 where hist(j) is the number

of frames spent in global mode j divided by T . Table 3 sum-

marizes the histogram distance, the number of onsets, and the

frames where a sound event is on for the example recording

shown in Figure 3. From Table 3 we observe that the number

of onsets, which can also be interpreted as the number of

sound segments detected, remains relatively constant even at

low SNR. As the SNR decreases, the number of frames where

sound events are on becomes smaller as portions of the key

jingle sound become completely overshadowed by the addi-

tive noise. As expected, we notice a large jump in histogram

distance δ(M1:T , M̂1:T ), as the SNR becomes negative.

5. CONCLUSIONS AND FUTURE WORK

In order to characterize the auditory scene in a fixed space,

a single microphone is often insufficient. In this paper we

1This metric is adapted from the MPEG-7 audio standard[10]

Table 3. Multi-channel segmentation performance in var-
ious levels of additive noise for the example environment.

SNR (dB) onsets frames on histogram distance

truth 3 408 0

10 3 410 0.0038

5 4 402 0.0106

0 3 377 0.0592

-5 5 302 0.2004

-10 4 203 0.3903

demonstrate a method to temporally isolate sound events

recorded with a microphone array that covers multiple rooms

of an office environment. In the future we hope to integrate

a fine-scale likelihood-based localization technique into the

DBN model, so that sound events can be localized in both

time and space. We are also currently investigating solutions

based around a local MAP criterion to retain or even surpass

the quality of the Viterbi segmentation results.
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