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ABSTRACT

In this paper, we conduct an analysis for reduction of musical noise
in integration method of microphone array signal processing and
nonlinear signal processing. In these days, for better noise reduc-
tion, integration methods of microphone array signal processing and
nonlinear signal processing have been researched. However, non-
linear signal processing causes musical noise. Since such musical
noise make users uncomfortable, it is desired that musical noise is
mitigated. Moreover, in these days, it is reported that higher-order
statistics is strongly related with the amount of generated musical
noise. Thus, we analyze the integrated method of microphone array
signal processing and nonlinear signal processing, based on higher-
order statistics. Also, we propose an architecture for reducing mu-
sical noise based on the analysis. The effectiveness of the proposed
architecture and analysis correctness are shown via a computer sim-
ulation and a subjective evaluation.

Index Terms— Musical noise, higher-order statistics, spectral
subtraction, acoustic arrays, speech enhancement

1. INTRODUCTION
In these days, integration methods of microphone array signal pro-
cessing and nonlinear signal processing have been studied for bet-
ter noise reduction, e.g., [1]. It is reported that such an integration
method can achieve higher noise reduction performance rather than
a conventional adaptive microphone array [2], e.g., Griffith-Jim ar-
ray. However, in such methods, artificial distortion (so-called mu-
sical noise) due to nonlinear signal processing arises. Since the ar-
tificial distortion makes users uncomfortable, it is desired that we
take control of musical noise. However, in almost all the integra-
tion methods, to mitigate musical noise, strength of nonlinear signal
processing is determined heuristically.

Recently, it is reported that the amount of generated musical
noise is strongly related with the difference between higher-order
statistics before/after nonlinear signal processing [3]. This fact en-
ables us to analyze how much musical noise arises through objective
nonlinear signal processing. Therefore, based on higher-order statis-
tics, we believe that it is possible to optimize integration methods
of microphone array signal processing and nonlinear signal process-
ing from the viewpoint of not only noise reduction performance but
also the sound quality. For the first step of this, we analyze the sim-
plest case of integration of microphone array signal processing and
nonlinear signal processing in this research.

Hereafter, we analyze two integration methods of microphone
array signal processing and nonlinear signal processing based on
higher-order statistics. Particularly, we focus on spectral subtrac-
tion (SS)[4] method, i.e., the most popular and simplest nonlinear
signal processing, as a nonlinear signal processing. Figure 1 shows
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Fig. 2. Block diagram of proposed channel-wise spectral subtraction
before beamforming (chSS+BF).

a typical architecture example of integration of microphone array
signal processing and SS. In this architecture, SS is performed after
beamforming. Thus we call this type of architecture BF+SS. On the
other hand, we propose a new architecture illustrated in Fig. 2, which
is an alternative type of integration of microphone array signal pro-
cessing and SS. In this architecture, channel-wise SS is performed
before beamforming. So we call this type of architecture chSS+BF.
We analyze such two methods based on higher-order statistics, and
reveal that chSS+BF can mitigate musical noise rather than BF+SS.
Finally, the propriety of the analysis based on higher-order statistics
is shown via a computer simulation and a subjective evaluation.

2. SPECTRAL SUBTRACTION AFTER BEAMFORMING
In BF+SS, first, the single-channel speech enhanced signal is ob-
tained by beamforming, e.g., delay-and-sum (DS) [5]. Next, the
single-channel estimated noise signal is also obtained by beamform-
ing technique, e.g., null beamformer [6] or adaptive beamform-
ing [5]. Finally, we obtain the speech enhanced signal based on SS.
The detailed signal processing is shown below.

We consider the following J-channel observed signal in time-
frequency domain as

x( f , τ) = h( f )s( f , τ) + n( f , τ), (1)

where x( f , τ) = [x1( f , τ), . . . , xJ( f , τ)]T is the observed signal vector,
h( f ) = [h1( f ), . . . , hJ( f )]T is the transfer function vector, s( f , τ) is
the target speech, and n( f , τ) = [n1( f , τ), . . . , nJ( f , τ))]T is the noise
vector. For enhancing the target speech, DS is applied to the ob-
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served signal. This can be represented by

yDS( f , τ) = gDS( f , θU )T x( f , τ) (2)

gDS( f , θ) = [g(DS)

1
( f , θ), . . . , g(DS))

J ( f , θ)]T, (3)

g(DS)
j ( f , θ) = J−1 · exp

(
−i2π( f /M) fsdj sin θ/c

)
, (4)

where gDS( f , θ) is the coefficient vector of DS array, and θU is the
look direction. Also, fs is the sampling frequency and dj ( j =
1, · · · , J) is the microphone position. Besides, M is the DFT size,
and c is the sound velocity. Finally, we obtain the enhanced target
speech spectral amplitude based on SS. This procedure can be given
as

|ySS( f , τ)| =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

√|yDS( f , τ)|2 − β · |n̂( f )|2
(where |yDS( f , τ)|2 − β · |n̂( f )|2 > 0),

γ · |yDS( f , τ)| (otherwise),

(5)

where ySS( f , τ) is the enhanced target speech signal, β is the subtrac-
tion coefficient, γ is flooring coefficient, and n̂( f ) is the estimated
noise signal. n̂( f , τ) is ordinarily estimated by some beamforming
techniques, e.g., fixed or adaptive beamforming.

3. PROPOSED METHOD AND ANALYSIS
3.1. Overview
In the proposed chSS+BF, channel-wise noise estimation is con-
ducted firstly. Next, SS is applied to the multi-channel input signal
channel-wisely. Finally, we perform DS to the SS-applied multi-
channel signal to obtain the speech enhanced signal. This architec-
ture can mitigate the musical noise (details are shown in Sect. 3.3).

3.2. Algorithm
In the proposed method, first, we perform SS in each input channel.
Consequently, we obtain the multi-channel target speech enhanced
signal by channel-wise SS. This can be designated as

|y(chSS)
j ( f , τ)| =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

√|x j( f , τ)|2 − β · |ñ j( f )|2
(where |x j( f , τ)|2 − β · |ñ j( f )|2 > 0),

0 (otherwise),

(6)

where y(chSS)
j ( f , τ) is the target speech enhanced signal by SS at j

channel, and ñ j( f ) is the estimated noise signal in j channel.

Finally, we obtain the target speech enhanced signal by applying
DS to ychSS( f , τ). This procedure can be represented by

y( f , τ) = gT
DS( f , θU )ychSS( f , τ), (7)

ychSS( f , τ) = [y(chSS)

1
( f , τ), . . . , y(chSS)

J ( f , τ)]
T
, (8)

where y( f , τ) is the final output of the proposed method.

3.3. Kurtosis based analysis
3.3.1. Analysis strategy
It has been reported by the authors that the amount of generated
musical noise is strongly related with the difference between the
before-and-after kurtosis of a signal in nonlinear signal process-
ing [3]. Thus, in this section, we analyze the amount of generated
musical noise through the proposed chSS+BF and BF+SS, based
on kurtosis. Basically, kurtosis increases through nonlinear signal
processing, and larger increment of the kurtosis by nonlinear signal
processing leads to more amount of musical noise generation [3].
Thus, it can be expected that the generated musical noise becomes
smaller with a lower-kurtosis-increment signal processing. In the
following subsections, hence, we analyze the kurtosis of BF+SS
and the proposed chSS+BF, and prove which method can reduce
the resultant kurtosis. Note that our analysis has no limitation in
assumption of noise model, thus any noises including Gaussian and
non-Gaussian can be under consideration.

3.3.2. Kurtosis

Kurtosis is one of the popular higher-order statistics for assessment
of non-Gaussianity. Kurtosis is defined as

kurtx =
μ4

μ2
2

, (9)

where x is the probability variable, kurtx is the kurtosis of x, and
μn is the n-th order moment of x. Although kurtx becomes 3 if x is
Gaussian signal, note that the kurtosis of Gaussian signal in power
spectral domain becomes 6. This is because Gaussian signal in time
domain obeys chi-square distribution with two degrees of freedom in
power spectral domain. In chi-square distribution with two degrees
of freedom, μ4/μ

2
2 = 6.

3.3.3. Resultant kurtosis in spectral subtraction [3]

In this section, we analyze the kurtosis after SS. For evaluating resul-
tant kurtosis of SS, we utilize gamma distribution as a model of input
signal in power domain [7]. The probability density function (p.d.f.)
of the gamma distribution for probability variable x is defined as

P(x) = Γ−1(α) θ−α · x α−1 e−
x
θ , (10)

where x ≥ 0, α > 0 and θ > 0. Here, α denotes the shape parameter
and θ is the scale parameter. Besides, Γ(·) is the gamma function.
Gamma distribution with α = 1 corresponds to chi-square distribu-
tion with two degrees of freedom. Moreover, it is well-known that
the average of the gamma distribution is E [P(x)] = αθ, where E[·]
is an expectation operator. Furthermore, the kurtosis of Gamma dis-
tribution, kurtGM, can be designated as [3]

kurtGM =
(α + 2)(α + 3)

α(α + 1)
. (11)

In SS, the average of observed power spectrum is utilized as an esti-
mated noise power spectrum. So the amount of subtraction is β · αθ.
Subtraction of the estimated noise power spectrum in each frequency
band can be regarded as deforming of the p.d.f., which is the lateral
shift of the p.d.f. to zero power direction. As a result, the probability
of the negative power component arises. To avoid this, such a neg-
ative component probability is replaced by zero (so-called flooring
technique). The resultant p.d.f. after SS can be written as

P(x) =

⎧⎪⎪⎨⎪⎪⎩
C · (x + β · αθ)α−1 e−

x+β·αθ
θ (x > 0) ,

C
∫ β·αθ

0
xα−1e−

x
θ dx (x = 0) ,

(12)

where C = 1/[Γ(α)θα]. Thus, the resultant kurtosis of SS, kurtSS,
can be given as

kurtSS≥ eαβ

α(α+1)

{
(α+2)(α+3)+βα(α+2)(α−1)+(βα)2

2
(α−3)(α−1)

}
.

(13)

Although we cannot describe details of the derivation of (13) due to
the limitation of the paper space, reference [3] helps you to under-
stand the derivation of (13).

3.3.4. Resultant kurtosis after DS

In this section, we analyze the kurtosis after DS, and we reveal that
DS can reduce the kurtosis of input signals.

Now let x j ( j = 1, . . . , J) be J-channel input signal, and we
assume they are i.i.d. signal each other. Moreover, we assume that
the p.d.f. of x j is both side symmetry and its average is zero. These
assumptions make odd order cumulants zero except the first order
cumulant. For cumulants, it is well known that the following relation
holds;

cumn(aX + bY) = an cumn(X) + bn cumn(Y), (14)

where cumn(X) expresses the n-th order cumulant of probability vari-
able X. Based on the relation (14), the resultant cumulant after DS,
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(solid line), and theoretical effect of DS considers no inter-channel
correlation (dotted line) in each frequency subband.

K(DS)
n , can be given by,

K(DS)
n = Kn/Jn−1, (15)

where Kn is the n-th order cumulant of x j. Using (15) and well-
known mathematical relation between cumulant and moment, the
power-spectral-domain kurtosis of DS can be expressed by

kurtDS =
K8 + 38JK4 + 32JK2K6 + 288J2K2

2 K4 + 192J3K4
2

2JK2
4
+ 16J2K2

2
K4 + 32J3K4

2

. (16)

Considering an actual acoustic signal and its cumulants, we can illus-
trate the relation between input and output kurtosis via DS as Fig. 3.
This relation can be approximated as

kurtDS � J−1 · (kurtin −6) + 6, (17)

where kurtin is the input kurtosis. As we can see from Fig. 3, the out-
put kurtosis decreases in proportion to the number of microphones.

When input signals have inter-channel correlation, the relation
between input and output kurtosis via DS approaches to the case
of only 1 microphone. If all input signals are the same signal, i.e.,
these signals are completely correlated, the output of DS is also the
same signal. In such the case, the effect of DS corresponds to the
case of only 1 microphone. In particular, inter-channel correlation is
not completely unit within all frequency subbands. It is well known
that the intensity of the inter-channel correlation is strong in lower
frequency subbands, and is weak in higher frequency subbands [5].
Therefore, in lower frequency subbands, it can be expected that DS
cannot reduce the kurtosis of the signal well.

Figure 4 shows the preliminary simulation result of DS. In this
preliminary simulation, first, SS is applied to multi-channel Gaus-
sian signal with actual inter-channel correlation. Next, DS is applied
to such the spectral-subtraction-applied signal. From this result, we
can confirm that the above mentioned fact, i.e., the effect of DS is
weak in lower frequency subbands. Indeed the effect of DS becomes
weak, note that the effect is not lost completely in lower frequency

subbands. Also, we can see that theoretical kurtosis curve is proper
to the actual result in higher frequency subbands. This is because
that inter-channel correlation is weak in higher frequency subband.
Consequently, DS can reduce the kurtosis of the input signal even if
inter-channel correlation exists.

3.3.5. Resultant kurtosis: chSS+BF vs. BF+SS
In the previous subsections, we have discussed the resultant kurtosis
of SS and DS. In this subsection, we discuss the resultant kurtosis of
the proposed chSS+BF and BF+SS. As described in Sect. 3.3.1, it
can be expected that the smaller kurtosis increment leads to the less
amount of generated musical noise.

In BF+SS, first, DS is applied to multi-channel input signal. At
this point, the resultant kurtosis in power spectral domain, kurtDS, is

kurtDS = J−1 · (kurtin −6) + 6, (18)

where kurtin is the kurtosis of the input signal in power spectral do-
main. Using (11), we can derive a shape parameter of gamma distri-
bution corresponds to kurtDS as

α̂ =

√
kurt2

DS +14 kurtDS +1 − kurtDS +5

2 kurtDS −2
, (19)

where α̂ is the shape parameter of gamma distribution corresponds
to kurtDS. Consequently, using (13), the resultant kurtosis of BF+SS,
kurtBF+SS, can be written as

kurtBF+SS≥ eα̂β

α̂(α̂+1)

{
(α̂+2)(α̂+3)+βα̂(α̂+2)(α̂−1)+(βα̂)2

2
(α̂−3)(α̂−1)

}
.

(20)

In the proposed chSS+BF, SS is applied to each input channel
firstly. Thus, the output kurtosis of channel-wise SS, kurtchSS, can be
given by,

kurtchSS≥ eα̃β

α̃(α̃+1)

{
(α̃+2)(α̃+3)+βα̃(α̃+2)(α̃−1)+(βα̃)2

2
(α̃−3)(α̃−1)

}
,

(21)

where α̃ is a shape parameter of gamma distribution for the original
input signal. Here, α̃ and kurtin satisfy (11). Finally, DS is performed
and its resultant kurtosis can be written as

kurtchSS+BF = J−1 · (kurtchSS −6) + 6, (22)

where kurtchSS+BF is the resultant kurtosis of the proposed chSS+BF.

Here, we consider the following equation to compare the resul-
tant kurtosis of chSS+BF and BF+SS.

D = kurtBF+SS − kurtchSS+BF, (23)

where D expresses the difference of the output kurtosis between
chSS+BF and BF+SS. Note that positive D indicates that the
proposed chSS+BF reduced the resultant kurtosis compared with
BF+SS. The relation about D is depicted in Fig. 5. In the figure,
oversubtraction parameter β is fixed to 2. From this figure, we
can confirm that the proposed chSS+BF can reduce the resultant
kurtosis rather than BF+SS for almost all the input signals with var-
ious kurtosis. When input kurtosis is smaller than 4, the proposed
chSS+BF cannot reduce the resultant kurtosis rather than BF+SS.
However, such an input kurtosis corresponds to sub-Gaussian signal.
In a common acoustical environment, such a sub-Gaussian signal
cannot be expected to exist. Therefore, the proposed chSS+BF can
be considered to reduce the resultant kurtosis rather than BF+SS in
acoustic signals.

4. EXPERIMENT AND RESULT
4.1. Computer simulation
First, we compared BF+SS and the proposed chSS+BF in kurtosis
difference and noise reduction performance. We used the following
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Fig. 5. Resultant kurtosis difference between chSS+BF and BF+SS.

16 kHz sampled signals as test data; the target speech is the original
speech convoluted with the impulse responses which were recorded
in a room with 200 ms reverberation, and to which an artificially
generated spatially uncorrelated white Gaussian was added. Besides,
we use 6 speakers (6 sentences) as sources of the original source.
The number of microphone elements in the simulation is changed
from 2 to 16. The subtraction coefficient β is set to 2.0, and the
flooring parameter for BF+SS, γ, is set to 0.0, 0.1, 0.2, 0.4 and 0.8.
Note that flooring is not performed in chSS+BF. In the simulation,
we assume that the noise estimation is performed perfectly.

Here, we utilize the kurtosis difference as the measure for the
amount of generated musical noise. This is given by

Kurtosis difference = kurt(nproc( f , τ)) − kurt(norg( f , τ)), (24)

where nproc( f , τ) is the power spectrum of the residual noise signal
after processing, and norg( f , τ) is the power spectrum of the noise
signal before processing. This kurtosis difference indicates how kur-
tosis is increased with processing. Thus, it is desired that the kurtosis
difference becomes smaller. Moreover noise reduction performance
is measured based on the power of the residual noise. This is de-
scribed as

Power of residual noise [dB] = 10 log10

⎧⎪⎨⎪⎩
∑

f ,τ |nproc( f , τ)|2∑
f ,τ |norg( f , τ)|2

⎫⎪⎬⎪⎭ . (25)

Figure 6 shows the simulation results. From Fig. 6(a), we can
see that the kurtosis difference of chSS+BF is monotonically de-
creasing with increasing the number of microphones. On the other
hand, the kurtosis difference of BF+SS is constant regardless of the
number of microphones. Indeed BF+SS with the specific flooring
parameter can achieve the same kurtosis difference as chSS+BF,
e.g., the case of flooring parameter 0.4 in 10 microphones. How-
ever, BF+SS with the large flooring parameter degrades the noise
reduction performance itself (see Fig. 6(b)). On the other hand, the
proposed chSS+BF can reduce the kurtosis difference, i.e., musi-
cal noise generation, without degradation of noise reduction perfor-
mance.

4.2. Subjective evaluation
Next, we conducted a subjective evaluation to confirm that the
proposed chSS+BF can mitigate the musical noise. In the evalu-
ation, we gave two processed signals by the proposed chSS+BF
and BF+SS respectively to examinees with random order, and let 7
examinees (7 males) forcedly select which signal is less amount of
musical noise (so-called AB method). In the experiment, 3 types of
noises, i.e., (a) artificial spatially uncorrelated white Gaussian, (b)
real-recorded railway-station noise emitted from 36 loudspeakers,
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and (c) real-recorded human speech emitted from 36 loudspeakers,
were used. Note that the noises (b) and (c) include inter-channel
correlation because they were real-recorded noise signals. 10 pairs
of signal per one kind of noise, totally 30 pairs of processed signal
were displayed to each examinee. Figure 7 shows the subjective
evaluation results, and we can confirm that the output of the pro-
posed chSS+BF is preferred compared with that of BF+SS even for
the real acoustic noises including non-Gaussianity and inter-channel
correlation properties.

5. CONCLUSION
In this paper, we analyze two integrated methods of microphone ar-
ray signal processing and SS, i.e., chSS+BF and BF+SS. We reveal
that the proposed chSS+BF can reduce the kurtosis compared with
BF+SS. Moreover, as a result of subjective evaluation, it is con-
firmed that the output of the proposed chSS+BF is considered as
less musical noise signal compared with that of BF+SS. These ana-
lytic and experimental results imply great potential of higher-order-
statistics based optimization for musical noise.
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