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ABSTRACT

One fundamental non-stationary scenario involves a time-varying
system in which the cross-correlation between the input signal and
the desired response is time-varying. This case occurs in speech en-
hancement applications, where the optimal solution is time-varying
due to the speech signal non-stationarity. Adaptive filtering per-
formance analysis of time-varying systems is crucial to further un-
derstand the tracking behavior and to ‘optimally’ design the update
schemes. In this work, we investigate the tracking performance of
the adaptive GSC applied for speech denoising. First, we interpret
the noise cancellation in terms of non-stationary system identifica-
tion. Then, we formulate the RLS adaptation as a filtering operation
on the (time-varying) optimal filter and the instantaneous gradient
noise (induced by the measurement noise). Under some structural
assumptions, we derive an expression for the Excess Mean Squared
Error (EMSE). Monte-Carlo simulations show that the proposed ex-
pression allows for a good prediction of the EMSE, and outperforms
the state-of-the-art approximations.

Index Terms— generalized sidelobe canceller; recursive least-
squares; tracking; non-stationary Wiener; speech enhancement

1. INTRODUCTION

Multichannel noise reduction in speech communication is still an
area of intensive research. It has a broad range of applications such
as teleconferencing, speech recognition and even hearing aids. The
Generalized Sidelobe Canceller (GSC), initially introduced by Grif-
fiths & Jim [1], is one of the relatively successful methods due to its
implementation simplicity and its capacity of handling noise non-
stationarity to some extent [2]. It consists of two parts: a fixed
beamformer and a sidelobe cancelling path (figure 1.a). The fixed
beamformer (in a look direction) is designed to reduce the incoher-
ent noise, while the sidelobe canceller w,(q) is adapted to suppress
the coherent noise components. Compared to classic beamforming
schemes (e.g. [3]), the GSC uses an unconstrained rather than a con-
strained adaptation, which may lead to faster convergence [4].

Many authors have evaluated more or less good enhancement
performance for GSC (or its variants) under different conditions
[5, 6]. Analytical calculations of the performance limitations have
therefore attracted the attention of many researchers. In particular,
steady-state performance under stationary input signals [5, 4] and
desired signal leakage (due to array imperfections, reverberation, or
source location inaccuracy) were extensively investigated [7, 8, 9].
However, for speech enhancement application, an adaptive noise
canceller should not only offer a good convergence, but also fast
tracking capabilities. Indeed even under a stationary propagation
environment, the noise canceller need to track the Wiener solution
(time varying due to the speech non-stationarity).
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The Recursive Least-Squares (RLS) algorithm is one of the ba-
sic tools for adaptive filtering. The convergence behavior of the
RLS algorithm is now well understood. Typically, the RLS algo-
rithm has a fast convergence rate, and is not sensitive to the eigen-
value spread of the correlation matrix of the input signal. However
when operating in a non-stationary environment (here due to the in-
put non-stationarity), the adaptive filter has the additional task of
tracking the variation in environmental conditions. In this context, it
has been established that adaptive algorithms that exhibit good con-
vergence properties in stationary environments do not necessarily
provide good tracking performance in a non-stationary environment;
because the convergence behavior of an adaptive filter is a transient
phenomenon, whereas the tracking behavior is a steady-state prop-
erty [10, 11, 16].

In this work, we investigate the tracking performance of the
adaptive GSC applied for speech denoising. Particular attention will
be paid to the effect of the desired speech and the jammer non-
stationarity on the enhancement capability. First, we interpret the
noise cancellation in terms of non-stationary system identification.
Then, we formulate the RLS adaptation as a filtering operation on the
(time-varying) optimal filter process and the instantaneous gradient
noise (induced by the measurement noise). Under some structural
assumption, we derive an expression of the Excess Mean Squared
Error (EMSE). The EMSE (defined in (17)) represents the power of
the additional error in the output due to the errors in the filter coeffi-
cients. This distance is tightly related to the misadjustment [16] mea-
sure. In the steady state, the excess MSE characterizes the tracking
capabilities of adaptive algorithms in non-stationary environment.
This paper is organized as follows. In section 2, the problem state-
ment is introduced. Then, the performance of the offline and adap-
tive GSC schemes are investigated in sections 3 and 4, respectively.

2. PROBLEM STATEMENT

In this paper, the performance of the GSC is investigated for an en-
vironment which consists of a look-direction signal (sy) (hereafter
referred to as the desired signal), one jammer (i), and an additive
stationary white noise (vy), i.e,

yr = h(qg)sk + g(q)ir + Vi, 1

where yj is a M x 1 vector representing the signal received on
a M-elements antenna array. h(z) = 3, h;z™" (resp. g(z) =
> 8 27 ") represents the multi-channel transfer function between
the desired source (resp. jammer) and the M -microphone array. The
introduction of ¢, where ¢~ ! is the one sample time delay operator:
q 'si = sg_1, allows to introduce the compact notation of transfer
functions in the time domain (whereas z in the z-transform is a com-
plex number).

In the following, we assume that:

ICASSP 2009



e h(z) is perfectly known: the fixed beamformer is assumed to
be turned to the right look-direction. Therefore, performance
degradation due to the desired speech leakage on the noise
reference is not considered herein.

e v}, is assumed to be stationary and spatially-white noise’. We
denote by @, (f)In the noise Power Spectral Density (PSD).
I isthe M x M identity matrix.

e s; and 7, are assumed to be a zero-mean non-stationary pro-
cesses. P (k, f) (resp. ®;(k, f)) denotes the time-varying
PSD of the desired signal (resp. jammer). (k, f) denotes the
time-frequency index.

Note that, for any scalar filter a(z), (h(z)/a(z), a(z)sk) leads to
an equivalent representation. Thus, without a loss of generality, we
assume that h(z) is all-pass, i.e.,|h (e/*"/) ||2 =1, Vf.

Using short term frequency analysis (STFT) notations, the re-
ceived signal can be expressed as:

y(k, f) = h(f)s(k, ) + g(£)i(k, f) + v(k, )

As the processing is performed independently for each frequency,
we suppress hereafter the frequency index for better readability. For
instance, we shall denote received (resp. desired signal, jammer,
noise) time-frequency domain signal y (£, k) (resp. s(f, k), i(f, k),
v(f, k)) still by yi (resp. sk, ik, Vi), i.e.,

vi = hsp + gir + vi

In this study, following [8, 12], we use Matched Filter (MF) n"
as fixed beamformer. The matched filter corresponds to the classic
Delay&Sum beamformer in case h(g) models only the line-of-sight
propagation. The matched filter also allows for partial dereverber-
ation in a reverberant environment. The M x (M — 1) blocking
matrix ht is defined in such way such that [h hJ‘] constitutes an
orthonormal basis.

&
¥ d 6 X l .
: » Q) . > Wo(q) O 4 ki

tQ o) :T(qﬁ‘
o =m0 |

@ ()

Fig. 1. Generalized Sidelobe Canceller: (a) block diagram, (b) sys-
tem identification interpretation.

The multi-channel noise canceller w,I: is designed to cancel the
noise that is still passing through the MF (exploiting the noise ref-
erence signal x). The noise canceller design and performance at-
tracted the attention of many researchers. For instance, theoretical
performance limits for stationary signals are derived in [5, 4]. The
desired signal leakage (due to either array imperfections, reverbera-
tion or source location inaccuracy) was also extensively investigated
[7, 8, 9]. On the other hand, in the context of speech enhancement,
the adaptation of the noise canceller becomes a critical and chal-
lenging issue. Indeed due to the desired signal and the jammer non-
stationarity, the noise canceller should be able to perform a fast and

3Remark that the spatial whiteness assumption is not restrictive: if the
noise power spectral density is known, a pre-whitening transform (applied to
the received signal) decorrelates of the noise components.
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accurate tracking of the variation in both the Signal-to-Noise Ratio
(SNR) and the Signal-to-Interference Ratio (SIR). To the best of our
knowledge, the effect of the input non-stationarity on the adaptive
GSC performances (and the RLS filter design) is not addressed yet.
This constitutes the major scope of the remainder of this paper.

3. PERFORMANCE ISSUES FOR OFFLINE GSC

In this section, we consider offline GSC designs (adaptation issues
will be investigated in the next section). The instantaneous second
order statistics of the desired signal ®,(k), the jammer ®;(k) and
the noise @, are first assumed to be known. The jammer multichan-
nel transfer function (position) g is also assumed available.

Under the previous assumptions, the noise canceller could be
optimally derived using Wiener theory. The Wiener solution (also
called the MMSE solution) minimizes the Mean Squared Error
(MSE) of the GSC output, and can be expressed as:

—1
Wz = de(k)ézm (k) (2)
where: . R
- By (k) = F){dkxk } = (h gg hi) ®;(k) is the 1 x (M —1)
instantaneous cross-PSD vector at the MF output.
H LH H 1 .
-~ B, (k) = E{xkxk } - (h gg'' h )@i(k) 4 ®,Ia_ 1 is the

instantaneous auto-PSD matrix of the noise reference.
The achieved MSE (at the GSC output) is:

hHgth )
(" htht” g) + (@i (k) /@)1

MSE® = @, (1 + 3)
The Wiener solution reaches the minimum MSE (achieved by any
linear processing). It constitutes therefore the ideal solution for our
problem. In practice however, the Wiener filter is very difficult to
design. Specifically, the instantaneous jammer PSD ®; (k) is very
difficult to track and to estimate.
An alternative solution is the so-called MMSE-ZF (MMSE-Zero
Forcing). The MMSE-ZF solution is derived by minimizing the out-
put MSE under perfect interference cancellation constraint, i.e.,

wfcf = minE{|dk. — ka|2}
w

E {(dk — ka)if} =0 @

Intuitively, the MMSE-ZF forces zeros on the jammer direction(s)
and adjusts the remaining degrees of freedom to minimize the output
MSE. The MSE achieved by the MMSE-ZF is:

o 2 hgg"h

MSE' gMSEf_¢U{1+M} )

Contrary to the MMSE, the MMSE-ZF solution does not require
the knowledge of the instantaneous jammer (®; (k)) and noise (®.)
PSDs . However, it still assumes the knowledge of g; which is still
problematic in some applications.

Another alternative (greedy) offline solution is applying the
MMSE filtering structure, while using averaged (instead of instanta-
neous) second order statistics, i.e.,

-1

The averaged statistics may be estimated as sample covariance, i.e.,

{ By, (k) =3, F(t—k)®4, (1) ~ 3, F(t — k)i, _,

_ H 7
Boa (k) = X F(t = W) ®ra(0) % X, F(t— Raporay_,



F'(t) is a given smoothing window. This design (that we refer to
as A-MMSE) requires no prior information on the jammer statistics
(@i(k)) or position (g). It can be also shown that the achieved MSE

1s:
hH ggH h )

MSE’ =&, (1+ —5 = =
( (8" h+ht%g) + (0(k)/Py)~!

Using the Jensen inequality (applied to the strictly concave function
u(z) = #), one can show that

(MSE° (k)) < (MSE” (k) ) < (MSE*/ (k)) ®)

where (.) denotes averaging over the time index k. Thus, the design
of F'(t) is subject to a tradeoff: the smoother the window (the larger
its time support) the better the estimation of the averaged statistics,
but the further the A-MMSE performance from the MMSE. On the
other hand, one could also remark that the A-MMSE outperforms
(always) the MMSE-ZF.

4. PERFORMANCE ISSUES FOR ADAPTIVE GSC

The GSC structure is a flexible tool to implement a constrained adap-
tive beamforming. Typically, the GSC algorithm minimizes the out-
put power subject to the constraint that the direction of arrival of the
desired signal should be passed without distortion (null constraints
on given (jammer) directions could be eventually forced). The min-
imization is typically implemented in an adaptive fashion. Adap-
tive filtering performance analysis of time-varying systems is crit-
ical to further understand the tracking behavior and to ‘optimally’
design the update schemes (choice of the tracking window, bene-
fit of the near-speech detection, etc). In [14], the tracking behavior
of some RLS variants (using exponential, rectangular and general-
ized tracking window) was investigated and compared for different
system variation models (AR(1), MA, and Random walk). In [13],
the authors have modeled the optimal filter as a stationary vector
process. The RLS scheme was interpreted as a filtering operation
on the optimal filter process and the instantaneous gradient noise.
The tracking analysis was performed in the frequency domain, and
various recursive updates were compared. Herein, we use a similar
approach to investigate the tracking capability of RLS adaptive GSC
for non-stationary noise reduction. First, we interpret the adaptive
noise cancellation as a time-varying system identification problem.
Then, the output Excess MSE (EMSE) is derived, and analyzed in
order to investigate the tracking capability of adaptive GSC.

4.1. RLS filtering for non-stationary noise reduction

The noise canceller wy,(q) is adapted to minimize the GSC output
power. For stationary signals, it has been established that the adap-
tive noise canceller converges to the Wiener solution (which achieves
the output power minimum) [4]. We denote by e, and ej, the GSC
outputs using respectively the RLS and the Wiener noise canceller:

er = d — WiXp,
ey =dp — WiXp.

)

Due to the orthogonality property of the MMSE, one can show that
e, and xy, are decorrelated, i.e.,

o H
E{egx, | =0. (10)
Thus, one can interpret the adaptive noise cancellation as a clas-

sic adaptive system identification problem (see Fig. 1.b). The adap-
tive system identification is designed to track a (typically linear FIR)
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model of the transfer function for the time-varying Wiener system.
By eliminating dj, in (9), the adaptive posterior error can be ex-
pressed as:

€k :kak‘ +8z (ll)

where w;, = w{, — wy, denotes the filter deviation.

In the adaptive RLS, the set of the IV adaptive filter coefficients
wi = [wi---wn k] gets adapted so as to minimize recursively
the Weighted Least-Squares (WLS) criterion

Je=F(q)ep = Filep_q|? (12)
i

where F(z) = 3, Fi 27" is the transfer function of the weighting
window { F;} characterizing the RLS algorithm. As the WLS crite-
rion in (12) is insensitive to arbitrary scaling of the weighting win-
dow, we can assume without loss of generality that F'(z = 1) = 1.
By setting the gradient of .J;, in (12) w.r.t. wy, to zero, we have

F(g) (xixi, wi ) = Fla) (xix, Wi ) + Fla) (xie).  (13)

As F(q) is generally low-pass, it acts as an averaging operator.
Thus,

F(q) (xk.ka w:) ~ [F(q) (xkka>] w,I: ~ gm(k)w: (14)

where ®,, (k) denotes the averaged cross-PSD of the noise ref-
erence (defined in (7)). The justification for this assumption is to
recognize that wy, (adapted using (12)) varies slowly within the sup-
port of F'(q), since it results from an averaging operation over the
smoothing window [16].
Following [16, 17], we also assume that the time-varying system and
the input signal are decorrelated'. By replacing the Wiener solution
by its expression, we get

F(q) (xkx: wzﬂ)

R

() (Baalh) wi")

F)® (k) =B, (k) (15

R

By injecting (14) and (15) in (13), one can express the adaptive filter
as:
1 -1

Wi = B () B, (k) + (F(a)egxy, ) B () (16)
N— ——

[
Wik

We observe that the RLS adaptive noise canceller fluctuates around
the A-MMSE (and not the MMSE). The filter deviation wj, = wj —
w, can be decomposed into:

e Wwj — wj, estimation bias: represents the error resulting from
low-pass filtering the system variations (lag noise, since in the
causal window case this means lagging behind).

-1 H .
o & . (k) (F’(q)e%x,C ) adaptation error: represents the effect
of the instantaneous noise fluctuation.

4.2. Tracking characteristics of RLS adaptive GSC

There are a number of references dealing with the performance of
RLS algorithms in non-stationary environments [15, 14, 16, 17]. The
basic idea is to focus on the model quality in terms of the output
Excess MSE (EMSE). We consider stationary optimal filter variation

ntuitively, we consider three levels of variations: (i) Local variations:
characterized by the instantaneous PSD (®.). (ii) Statistic variations: de-
scribe the evolution of the time-varying instantaneous PSD. (iii) Adaptation
variations: relative to the evolution of the adaptive component (function on
the averaged instantaneous statistics). In order to obtain simple expressions,
we assume that the three variation levels are decorrelated.



models, hence the RLS algorithm will reach a stationary regime to
which we limit our attention. The EMSE is defined as:

EMSE — E{ei}fE{eZZ}. 17

Although in principle the a priori error signal should be considered
for the EMSE, we shall stick to the a posteriori error signal to avoid
the appearance of a delay in the notation. Equations (10) and (11)
lead to

H __ _H - ~H H
EMSE = E {xk, WL W xk} =tk {Wka XXy, }

If we invoke the independence assumption, in which xj, and wy, are
assumed to be decorrelated (this follows from the assumptions used
in (14) and (15)), the EMSE can be expressed in the following form:

(18)

By injecting the expression of wy, and after some manipulations, the
EMSE can be decomposed into:

e Bias component (MSE’ (k)) — (MSE°(k)): increases with
the low-pass capability of the smoothing window F'(q).
e Variance component
H 2
Hg hJ-H ®;(k —p)+ Py
<2Fp2¢)°(kp) M — = >:
v B3 IEHORE X
is due to the adaptation error component.This term drops with
the low-pass capability of F'(q). ®°(k) = ®, (k) +MSE’ (k)
is the PSD of ej,.
Thus, the choice of the smoothing window leads to a tradeoff be-
tween the steady-state performance (bias component) and the track-
ing capability (variance component).

The theoretical approximation derived in this work has been

tested through computer simulations. A GSC-based noise reduction
scheme was implemented. The desired and jammer signals are either
speech signals (sampled at 8 kHz), or generated as white Gaussian
processes with slowly time varying PSD. In case of speech input,
the instantaneous statistics are estimated using a sliding Hanning
window (length=30 ms, overlap=50%). The optimal Wiener filter
is generated using these statistics. A weighted RLS algorithm (using
a exponential smoothing window) was used to adapt the noise can-
celler wy,.
We compare the proposed approximation with the EMSE expres-
sion proposed in [16] and [17]. In these references, the time-varying
system wj, is assumed to be a first order AutoRegressive process
(AR(1)). In our simulations, we first generate an AR(1) approxima-
tion of the Wiener filter (using multichannel linear prediction). Next,
we inject the estimated AR coefficient into the EMSE approxima-
tions derived respectively in [16] and [17]. Monto-Carlo simulation
was performed: the desired source, noise and jammer realizations,
as well as the directions of the desired source h and the jammer g
were randomly generated. Figure 2 compares the theoretical and ex-
perimental EMSE as a function of the exponential windowing factor
. The spatial dimension is M = 5. The average INR (Interference-
to-Noise Ratio) and SNR were set to 10 dB and -20 dB, respectively.
One can observe the good match between the simulated and the pre-
dicted EMSE curves, and notice that the expression derived herein
outperforms both the approximations in [16] and [17].

The focus of this paper was to derive a theoretical approxima-
tion of the EMSE of the adaptive GSC for speech enhancement. This
may lead to a better insight into the understanding of the tracking be-
havior of such scheme. For instance, the effect of adaptation within
the silence periods of the desired signal can be quantified. Smooth-
ing window optimization issues could be also investigated (similar
to [13]). These topics will constitute the focus of our future work.

EMSE ~ tr E {WkaH ‘§TT(k')}
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Fig. 2. EMSE vs. A for GSC based speech enhancement scheme: (a)
Gaussian white input, (b) speech signal input.
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