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ABSTRACT 

 
The purpose of this study is to investigate the performance 
of speech presence (SP) microphone array beamforming.  
When the presence uncertainty of the desired speech is 
considered, noise reduction is greatly achieved while 
preserving low speech distortion level. Furthermore, we 
propose a novel model based speech presence probability 
(SPP) estimator, exploring both the sinusoid structure of 
speech and signal-to-noise ratio (SNR). Finally, experiments 
verify the effectiveness of the proposed SP-beamformer, 
resulting in a better trade-off between speech distortion and 
noise leakage, and a corresponding higher output segmental 
SNR, when compared with the classical beamformers.   
 

Index Terms—Microphone array, speech presence 
probability, speech enhancement 
 

1. INTRODUCTION 
 
Distance based speech acquisition via microphone array is a 
viable approach for speech recognition. In most applications 
of microphone array beamforming systems, speech detection 
and estimation are treated distinctly and separately. 
Generally, time domain voice-activity-detection (VAD) is 
performed whenever the system is engaged. If speech is 
detected, the array input1 is decomposed into the short-time 
Fourier transform (STFT) domain and every frequency bin 
coefficient is further processed by a subsequent narrowband 
beamformer, such as minimum mean square error (MMSE) 
or minimum variance distortion-less response (MVDR), in 
order to decrease the ambient noise and enhance the desired 
speech; otherwise, beamforming will not be activated and 
the entire system will have a null output.  

One main problem with this overall approach may be 
stated as: the speech signal is generally sparse in the 
frequency domain, which means that the speech signal is 
significantly condensed within a limited range of frequency 
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components. Performing beamforming in a speech absent 
frequency bin is not wise because the ambient noise of that 
very frequency will be incorporated by the beamformer.  

Moverover, the decision on activity for the beamformer 
is based on the binary decision of the VAD. A miss 
detection, which happens in real noise environments, leads 
to unrecoverable/incorrect results from the beamformer 
output. Hence, a ‘soft’ decision is needed from the VAD and 
the corresponding soft-decision oriented beamformer should 
be designed to taken into account both the presence and 
absence of the speech signal.  

In this study, we present a novel speech presence 
beamformer (SP-Beamformer) which incorporates a speech 
sinusoid model based speech presence probability estimation 
and soft-decision orientated beamforming.  

 
2. SPPECH PRESENCE BEAMFORMER 

 
2.1. Classical Beamformer 
 
To illustrate the proposed idea, we consider an array of M  
microphones located in the far-field. We assume that there is 
only one desired signal and treat the remaining signals as 
noise or interference. Taking the STFT of the array received 
signals; the following data model is obtained:  
                      ( , ) ( , ) ( , ) ( , )Y l k A k s l k N l k                      (1) 
where ( , )l k denotes the time-frequency bin, =0,1,l is the 
time frame index and  = 0,1, 1k K is the frequency bin 
index. Hereby, 1( , ) MY l k C is the array observed data. 

1( , ) MA k C is the array steering vector for the desired 
speech ( , )s l k C  with a direction-of-arrival(DOA) , and 

1( , ) MN l k C is a noise-plus-interference vector. In this 
section, we assume that the desired signal, noise and 
interference are all Gaussian i.i.d; hence we have the 
simplify notification:  
                               ( )Y A s N .                                    (2) 
The classical optimal narrowband beamformer is a linear 
processor for the array observations [1]. The output of the 
beamformer is given by:  

ˆ  Hs W Y ,                                         (3) 
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where ( )H  stands for the complex conjugate transpose. The 
weights W are chosen according to some optimization 
criteria, such as MMSE or MVDR [1]. 
 
2.2. Optimum Signal Presence (SP) Beamformer 
 
In general, classical beamforming is developed with the 
assumption that the desired signal is always present; 
however, this is not practical in real world applications. 
Here, an optimal beamformer in the MMSE sense is 
developed that takes the presence and absence of the desired 
signal into consideration.  

Let 0 1={ , }H H H denote the hypothecs space, with 0H and 
1H respectively indicting the presence and absence of the 

desired signal in the time-frequency bin, 
1

0

:  ( )
:               

H Y A s N
H Y N

.                               (4) 

The MMSE estimator of the desired signal is the conditional 
mean of ( , )s t k , givenY and can be written as:  

0 0 1 1

ˆ { | } { { | , }}

            = ( | ) { | , } ( | ) { | , }
SP mmses E s Y E E s Y H

p H Y E s Y H p H Y E s Y H
.    (5) 

If we further assume the signal’s DOA  is known a priori, 
the expectation 1{ | , }E s Y H  is the MMSE estimator when 
the desired signal is present at DOA , leading to the 
classical spatial Wiener filter point to [1], defined as:  

1{ | , } H
WFE s Y H W Y .                             (6) 

Moreover, if we define 0{ | , } 0E s Y H , which means zero 
output from the beamformer when the desired single is 
absent, the entire MMSE estimator is simply the scaled 
version of the classical spatial Wiener filter, given as: 
                        1ˆ  ( | ) H

SP WF WFs p H Y W Y ,                           (7) 
which is scaled by the presence probability of desired signal. 
 
2.3. Relation to Distortion-weighted Wiener Filter  

 
Next, we explore the relationship between the speech 
presence beamformer and Speech-Distortion-Weighted 
Wiener Filter [2]. If we require the same estimator for both 
the case of speech presence and absence, that is, in the 
speech present case, we require that the estimator provide a 
minimal distortion of the desired speech while in the speech 
absent case, we want the same estimator to provide a 
minimal noise output power. With these goals, the filter is 
given by solving the following relation:     

2 2

0 2

1 2

0
2 2

1

arg min{ ( | ) {| | }

         ( | ) {| ( ) | }}
( | )       =arg min{ |1 ( ) | }
( | )

n s

H
PA W

H

H H
N sW

W p H Y E W N

p H Y E W A s s

p H Y
W R W W A

p H Y

(8)      

where 2
n is related to the noise reduction, and 2

s is related 

to speech distortion, which is the same as that in the standard 
spatial Wiener Filter.  
       However, the probability ratio 0 1( | ) / ( | )p H Y p H Y  
which serves as a weighting term here, controls the tradeoff 
between the noise reduction and speech distortion terms, 
whereas the standard Wiener filter assigns equal importance 
to both terms, as 1 . If the ratio 1 , the residual noise 
level is reduced at the expense of increased signal distortion. 
On the contrary, if ratio 1 , signal distortion is decreased 
while the remaining residual noise level is increased. This is 
actually the same as the so-called speech-distortion-weighted 
Wiener filter [2], which can be incorporated into the speech 
presence beamforming framework.  
 

3. MICROPHONE ARRAY SPP ESTIMATION 
 

3.1. Sufficient Statistics Space 
 
The statistical hypotheses under signal presence uncertainty 
employed here can be formulated as:  

1 1

0 1

1( | ) exp{ ( ) ( )}
det( )

1( | ) exp{ }                     
det( )

H
NM

N

H
NM

N

p Y H Y As R Y As
R

p Y H Y R Y
R

               (9) 

Instead of directly working on the array observations, we 
employ the sufficient statistics 1z C  of s instead of using 
Y for SPP estimator design, which can be written as [3]: 
               

1 1

1 1

H H
N N

H H
N N

A R Y A R N
z s s n

A R A A R A
                        (10) 

where 1 1/( )H H
N Nn A R N A R A is also a random Gaussian 

variable, with power 2 11/ H
n NA R A . As shown in [3], z in 

is the sufficient statistics in the Bayes sense for any function 
of s . Noting that z is a single channel signal containing both 
the source speech term s and effective noise term n , 
sufficient statistics allow us to perform single channel SPP 
estimation over direct multichannel observations, as:  

1 1( | )  ( | )p H Y p H z                                      (11) 
 

3.2. Classical Speech Presence Probability Estimation 
 
Under the stochastic speech model assumption, the speech 
STFT coefficients are complex zero-mean Gaussian random 
variables. The noisy speech distribution conditioned on the 
speech presence/absence hypothesis is given as:  

        
21 2 2

2 2

20 2
2

1( | ) exp{ ( )}
( )
1( | ) exp{ }                    

s n
s n

n
n

p z H z

p z H z

               (12) 

The probability of speech presence given the observation 
( , )z l k can be written as: 

1( | ) /(1 )p H z .                            (13)       
The general likelihood ratio (GLR) at time-frequency bin 
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( , )z l k  is defined as the weighted ratio of the likelihood of 
speech presence and the likelihood of speech absence [4]: 

1 1 1

0 0 0

( | ) ( ) ( | ) 1 exp{ }
( | ) ( ) ( | ) 1 1 1

p H z p H p z H q
p H z p H p z H q

        (14) 

where 1( )q p H  denotes the  a priori probability of speech 
presence. 2 2/s n  and 2 2( / )nz are defined as the a 

priori and a posteriori SNRs. In general, is unknown and 
can be estimated by using the decision-directed approach [4].     

There exists an intrinsic drawback when the decision 
directed approach is applied to SPP estimation [6]. Here, we 
want the SPP transition curve to be steep enough to give a 
clear decision, yielding a larger value for speech presence 
and a smaller value for speech absence.   Thereby, noise is 
effectively reduced and/or speech is preserved.   However, 
since speech is highly non-stationary and has a wide 
dynamic range of amplitude even within a short time, a 
steeper transition curve may result in both higher false-alarm 
rate and miss-hit rate. For example, Fig.1.(a) with 0.3q  
gives the steepest transition curve among the three, resulting 
in a cleaning out of the weak speech part. However, a flatter 
transition as in (c) with 0.7q  preserves a highly noise 
level even with an a priori SNR= 40 dB.            
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Fig. 1.  SPP Curves for different q, where q is the a priori SPP. 

 
To address this problem, Cohen and Berdugo[5] suggest to 
update q  according to both local and global averages of . 
Next, averaged values are non-linearly mapped between 0 
and 1, to represent the a priori SPP. Although this SNR 
based a priori SPP estimation approach may be efficient for 
stationary or slowly time-varying background noise 
situations, the false detection rate is extremely high when 
non-stationary or intransient noise is present. The next 
section proposes an alternative method. 
 
3.3. Proposed SPP Estimation   

In this section, we propose to estimate the a priori SPP by 
exploring the structure of speech itself rather than SNR, 
resulting in a speech structure model and SNR combined 
GLR. As suggested in [7], speech can be approximately 
represented by a sum of sinusoids on a frame-by-frame 
basis, in the time domain as:  

                    , , ,
1

ˆ ( ) cos( )
lI

t i l i l i l
i

z l a t                              (15) 

where ˆ ( )tz l is the approximated speech for frame l in the 
time domain, lI is the number of sinusoids used; and 

,i la , ,i l  and ,i l are the thi  sinusoidal amplitude, angular 
frequency and phase. For voiced speech frames, this model 
is effective because of the harmonic structure of the voice 
speech; and for the unvoiced frames, relatively more 
sinusoidal components are needed.  

Let l  represent the discrete frequency-bin sets that 
correspond to all sinusoid frequencies 1, 2, ,{ , , }

ll l I l  at 
frame l . Hence in the STFT domain, the time- frequency bin 

( , )z l k  with k  belongs to set l will have a higher a priori 
speech presence probability than others,  

        
( , )

1   otherwise
l

M

if k
q t k                                (16) 

where Mq denotes the model based a priori SPP and 
[0,1]  is typically set to 0.8 in this study. Therefore, we 

can modify GLR as, 
1

0
( | )

1 ( | )
M

MS
M

q p z H
q p z H

 ,                              (17) 

where MS denotes the modified GLR, and is a weighting 
factor. This modified GLR integrates the information from 
both speech structure and SNR, and should be more reliable 
than SPP estimated only from SNR.  

The notation used here is that, a priori SPP Mq and q is 
conceptually the same (both are 1( )p H ), but measured from 
different perspectives. In [5], the authors believe that higher 
SNR corresponds to higher probability that hypothesis 1H is 
true. In our model, a higher probability is assigned to the one 
that ‘looks’ more like speech. Hence, with 1 , MS  still 
has the same meaning as a likelihood ratio. However, 
if 1 , MS cannot be interpreted as likelihood ratio: 
for 1we accentuate the a priori information and for 1, 
we give more credit to the observation.  

To obtain reliable estimation of the sinusoid frequencies, 
we also employ the same direction-directed idea: perform 
sinusoid decomposition at the output of the estimator, 
through the method proposed by Jensen and Hansen [7]. 

 
4. EXPERIMENTS AND DISCUSSION 

 
The performance evaluation consists of two parts: both 
single channel and microphone array are considered. We 
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employ the same measurement approach described in [6] to 
evaluate the SPP estimators, in terms of speech distortion 
(SD), and noise leakage (NL). The SD measure indicates the 
ratio of speech energy that the SPP estimator neglects to the 
entire speech energy; NL measures the ratio of the noise 
energy from the noise-only bins that are not decreased. 
Finally, we compute the segmental SNR improvement when 
SPP estimator is applied to MMSE filter[4] in the signal 
channel case, and MMSE/MVDR beamformer in the array 
case, respectively.  The improvement of the segmental SNR 
[6] can be written as: ˆ{ } { }seg segSNR SNR s SNR y  with ŝ  as 
the estimated output and y the observation signal. Noise 
power is estimated and updated by Martin’s method [8].   
 
4.1. Single Channel SPP Performance  
 
Table 1 compares performance with three different SPP 
estimators. The results given are averaged over ten 
phonetically balanced sentences from the TIMIT database, 
and five noise sources taken from NoiseX92 database. All 
acoustic data are down-sampled to 8 kHz. 
 
          Table 1: results of single channel SPP performance  
 -5dB 

SD   NL  SNR  
%    %      [dB] 

        0dB 
SD    NL SNR  
%     %      [dB] 

      5dB 
SD  NL SNR  
%    %    [dB] 

                                 SPP with fixed a priori [4] , 0.5q  
white 3.6    41.2    7.8 1.2   41.6   5.5 0.4   42.6   4.2 
pink 1.3    45.3    7.1 0.7   45.0   5.2 0.4   44.5   4.0. 
car 0.3    72.0    8.7 0.3   73.0   7.9 0.2   71.0   6.2 
factory 1.4    53.3    5.1 0.6   51.3   3.6 0.4   49.1   2.8 
babble 1.1    61.2    4.7 0.5   56.7   3.2 0.3   50.5   2.4 
                   SPP with a priori  SPP updated according to [5] 
white 6.9    6.2      8.5 2.7     8.3    6.3 1.0   10.6   5.4 
pink 7.3   45.3     8.2 2.1   16.0    6.0 1.2   15.3   5.1 
car 1.2   24.1   11.3 0.9   30.0    9.2 0.6   36.0   7.4 
factory 5.4   38.8     6.1 1.7   40.9    5.0 0.7   42.6   3.7 
babble 5.7   40.2     5.0 1.6   41.5    4.1 0.7   42.8   3.2 
                Proposed SPP with 0.8,  

1.5 for frequency >1.4k, 1 for frequency 1.4k  
white 7.2   13.1     8.7 3.3   14.0    6.0 1.1   16.1   5.2 
pink 4.0   16.2     8.2 2.1   15.1    5.7 1.0   16.4   4.8 
car 1.0   18.1   10.0 0.9   18.5    8.2 0.7   17.3   6.8 
factory 3.1   23.8     7.7 2.0   21.6    5.3 1.3   20.7   4.2 
babble 2.0   25.9     6.3 1.6   24.5    4.6 1.2   21.3   3.9 
 
From Table 1, the proposed SPP has a relatively smaller 
noise leakage and larger speech distortion; but in many cases, 
especially in non-stationary noises (babble, factory), 
proposed SPP has the highest segmental SNR improvement.  
SD may be introduced by the speech modeling error, but 
from informal listening evaluations we believe that speech 
quality is not tremendously affected. NL is significantly 
reduced over the previous SPP method for all the tested non-
white background noises. 
 
4.2 SP-Beamformer in Real Car Noise Environment 

Table 2 compares the segmental SNR improvement of our 
SP-beamformer versus classical beamformers under in-car 
noises taken from noise portions of CU-Move database [9]. 
The microphone array used for CU-Move is a linear five-
channel array, with 4.25cm distance between consecutive 
microphones, to avoid spatial aliasing at sampling frequency 
of 8 kHz. The experiment is conducted in a semi-real 
version: 10 clean sentences (with DOA 70 ) from the 
TIMIT database degraded by 5 channel CU-Move noise 
recordings.  Because in-car noise is diffused, diagonal 
loading (DL) is used. SNR  is computed over signal 
channel response.  
 
Table 2: SNR  comparison between classical and SP beamformers 

        -5dB  SNR   0dB SNR  
 

5dB SNR  
 

MVDR-DL     2.2dB      1.7dB      1.1dB 
SP-MVDR-DL     3.4dB      2.8dB      2.2dB 
MMSE-DL     5.7dB      4.4dB      4.0dB 
SP-MMSE-DL     7.6dB      6.3dB      5.3dB 

                            
From Table 2, the proposed SP-beamformer has the highest 
segmental SNR improvement over classical beamformers. In 
practice, speech is sparse in the STFT domain, leaving much 
room for noise reduction and SNR improvement. 
 

5. SUMMARY 
 

In this study, a speech presence (SP) microphone array 
beamforming algorithm was proposed. The model based 
speech presence estimator integrated with beamforming is 
shown to measurably improve performance over traditional 
MMSE and MVDR based systems. An absolute 1.1 to 1.9dB 
improvement in segmental SNR is obtained for real in-car 
speech beamforming application.  
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