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ABSTRACT

This paper proposes a robust NLMS algorithm with a novel noise
modeling based on stationary/nonstationary noise decomposition. The
ambient noise including the near-end signal is modeled as a weighted

sum of the stationary and the nonstationary components. These com-
ponents are independently estimated with an appropriate time con-
stant for better accuracy. The estimates are weighted by the station-
ary/nonstationary likelihood before summation. The integrated noise
estimate controls the coefficient adaptation stepsize such that it is an
upward convex function of the reference input with a noise offset for

robustness. Evaluations in a fullband and a subband echo cancella-
tion scenarios show that ERLE has been improved by as much as
40 dB over the algorithm with a conventional noise model in both
single- and double-talk sections with no double-talk detection.

Index Terms— Adaptive filter, Robust algorithm, Noise model,

Echo cancellation, Double-talk

1. INTRODUCTION

Adaptive filters have widespread applications in communications.

These applications include echo cancellers, noise cancellers, and mi-

crophone arrays to name a few. Coefficients of an adaptive filter are

updated based on the misadjustment defined as the difference be-

tween the desirable signal and the filter output. The misadjustment

is often disturbed by additive noise and interference. Because the

misadjustment is not separately available from the disturbance, coef-

ficients are adapted using the error that consists of the misadjustment

and the disturbance. Coefficient adaptation is seriously interfered

unless the disturbance is sufficiently small compared to the misad-

justment. Double-talk control in echo cancellation is an example of

this problem. This problem has also been studied from a viewpoint

of robust algorithms [1]–[4].

Hirano et al. proposed a noise-robust NLMS (normalized least

mean squared) algorithm, which makes its stepsize smaller with a

larger disturbing term [1, 2]. The disturbance is estimated as a long-

term average of the instantaneous error. This is because averaging

operation with a large time constant guarantees sufficient accuracy

in the estimation. Although it is a good choice for stationary sig-

nals, it may not provide sufficient tracking capability for nonstation-

ary signals including an impulse-like signal. If the time constant is

set smaller, the accuracy for stationary signals is traded off for the

tracking speed. Its descendant [2] has improved estimation of the

disturbing term, however, it is effective only during the convergence

process of the adaptive filter.

Valin et al. proposed robust algorithms with an adaptive step-

size to control the learning rate based on the power of the distur-

bance [3, 4]. They calculate an estimated ratio of the misadjustment

to the error. To estimate the misadjustment power, it is expressed
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Fig. 1. System Identification.

by the product of the echo power and a normalized filter misadjust-

ment that is the inverse of the echo-return-loss enhancement (ERLE).

Then, the echo power is approximated by the adaptive filter output.

It is naturally assumed in [3, 4] that the normalized filter misadjust-

ment, or equivalently, the ERLE, is slowly time-varying. However,

it is true only from an analytical point of view. Reflecting coef-

ficient adaptations, the ERLE is rapidly changing. Therefore, the

same problem resides in the ERLE estimation as in the disturbing-

term estimation of [1, 2].

This paper proposes a robust NLMS algorithm with a novel noise

modeling based on stationary/nonstationary noise decomposition. An

integrated noise estimate, which consists of a stationary and a non-

stationary noise estimates with appropriate time constants, is used

to control the stepsize for coefficient adaptation. In the following

section, the conventional algorithm [1] is reviewed to highlight the

trade-off in noise estimation. Section 3 presents a new noise model

in combination with a robust NLMS algorithm. Finally in Section

4, evaluation results in the context of echo cancellation are demon-

strated to show the robustness to the disturbing term including both

the ambient noise and the near-end speech.

2. CONVENTIONAL ALGORITHM

Let us consider system identification of an unknown system with an

impulse response h as shown in Fig. 1. w(k) is the coefficient vector

of the adaptive filter with a time index k. x(k) is the reference input

to the adaptive filter. Vectors h, w(k), x(k) are defined by

h = [h0 h1 · · · hN−1]
T
, (1)

w(k) = [w0(k) w1(k) · · · wN−1(k)]T , (2)

x(k) = [x(k) x(k − 1) · · · x(k −N + 1)]T , (3)
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where N is the number of adaptive-filter coefficients and [·]T de-

notes a vector transpose. The unknown-system output m(k) and the

adaptive-filter output ŷ(k) are expressed by

m(k) = y(k) + n(k),

= x
T (k)h + n(k), (4)

ŷ(k) = x
T (k)w(k), (5)

with the genuine output of the unknown system y(k) and a back-

ground noise n(k). From (4) and (5), the error e(k) becomes

e(k) = m(k)− ŷ(k),

= x
T (k) {h−w(k)}+ n(k). (6)

The noise-robust NLMS algorithm [1] performs coefficient adap-

tation with a time-varying stepsize μ(k) by

w(k + 1) = w(k) + μ(k)e(k)x(k), (7)

μ(k) =
μ0σ̂

2
n(k)

σ4
x(k) + α2σ̂4

n(k)
. (8)

σ2
x(k) and σ̂2

n(k) are the input-signal power and a noise power es-

timate, respectively. α is a positive constant. σ2
x(k) and σ̂2

n(k) are

given by

σ
2
x(k) = x(k)T

x(k) (9)

σ̂
2
n(k) =

{
βσ̂2

n(k − 1) + (1− β)e2(k) σ2
x(k) < σ2

0

σ̂2
n(k − 1) otherwise

, (10)

with a threshold σ2
0 . The stepsize in (8) is an upward convex func-

tion of σ2
x(k) with a noise offset α2σ̂4

n(k) for robustness. For a large

power of the noise, the stepsize naturally decreases to a small value

for stability. Therefore, the robustness largely depends on the accu-

racy of the noise estimate σ̂2
n(k).

The noise estimate is calculated as an average of the error e(k)
that may be contaminated by noise. An averaging parameter β in

(10) is set to a value close to 1 so that sufficient accuracy is guar-

anteed. However, it does not provide good tracking capability for

quick changes widely encountered in nonstationary signal such as

speech. If a smaller value of β is used for better tracking capability,

sufficient accuracy for nonstationary noise may not be guaranteed.

There is a trade-off in the selection of β.

3. PROPOSED ALGORITHM WITH A NEW NOISE

MODEL

The proposed algorithm performs coefficient adaptation with the fol-

lowing time-varying stepsize.

μ(k) = a(k)μmin(k), (11)

μmin(k) = min{μ̄(k) μ̄(k − 1) · · · μ̄(k −M + 1)}, (12)

μ̄(k) =
μ0σ

2
n(k)

σ4
x(k) + σ4

A(k)
, (13)

a(k) = max{sgn(σ2
x(k)− σ

2
0), 0} (14)

a(k) in (14) is introduced to (11) such that coefficient adaptation is

skipped for low input power. min{·} is an operator to take the min-

imum value of the arguments. (12) takes the minimum stepsize of

the past M samples for robustness. α2σ̂4
n(k) in (8) is replaced with

a better noise estimate σ4
A(k) that is integrated from the stationary
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Fig. 2. The proposed algorithm in an acoustic echo canceller.

and the nonstationary noise estimates. Figure 2 illustrates a blockdi-

agram of the proposed algorithm in an acoustic echo canceller.

Separate estimations for the stationary and the nonstationary noise

are introduced for eliminating the trade-off in the β selection. They

are estimated with different values of β and mixed depending on the

stationarity likelihood c1(k) as

NEW NOISE MODEL

σ
2
A(k) = c1(k)σ2

sn(k)+{1− c1(k)}σ2
nn(k), (15)

where σ2
A(k), σ2

sn(k), and σ2
nn(k) are the integrated noise estimate,

the stationary noise estimate, and the nonstationary noise estimate,

respectively. The simplest way is to select either the stationary or the

nonstationary noise as follows:

c1(k) = max{sgn(ε0σ
2
sn(k)− e

2(k)), 0} (16)

ε0 is a postive constant. (15) and (16) mean that, when the error

e2(k) is within a certain range of the estimated stationary noise, it is

considered as stationary noise, otherwise, nonstationary one.

This principle is reasonable when there is a negligible residual

echo because the variance from the estimate is relatively small for

stationary noise and large for nonstationary one. Nonetheless, it does

not hold when the residual echo is not negligible such as in the con-

vergence process of the adaptive filter. In that case, (16) is replaced

by (17), where the second condition is newly introduced.

c1(k) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 e2(k) < ε1σ
2
sn(k)

1 e2(k) > ε1σ
2
sn(k)

and σ2
x(k) > σ2

0

and e2(k) < σ2
x(k)

0 otherwise

. (17)

When there is possible residual of y(k), e2(k) smaller than the refer-

ence signal σ2
x(k) is additionally considered as nonstationary noise.

Possibility of the residual is evaluated by the reference signal power.

Convergence is declared once an averaged gradient Δw(k) of

the coefficient-vector norm has become smaller than a threshold Δ0.

Δw(k) is given by

Δw(k) =
1

L

k∑
j=k−L+1

Δw(j), (18)

Δw(k) =
w

T (k)w(k)−w
T (k − 1)w(k − 1)

wT (k)w(k)
. (19)

Δ0 and L should be optimized for given values of μ0 and N .
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Fig. 3. Separate estimation of stationary/nonstationary noise and

their integration.

Stationary noise is estimated by leaky integration in (20) that is

controlled by (21).

σ
2
sn(k) =

{
β0σ

2
sn(k − 1) + (1− β0)e

2(k) c2(k) = 1
σ2

sn(k − 1) c2(k) = 0
, (20)

c2(k) =

⎧⎨
⎩

1 σ2
x(k) < σ2

0

and ε2σ
2
sn(k) < e2(k) < ε3σ

2
sn(k)

0 otherwise

, (21)

where ε2 and ε3 are positive constants. β0 is a constant satisfying

0 ≤ β0 ≤ 1. σ2
sn(k) is an average of σ2

sn(k) given by

σ
2
sn(k) = β1σ

2
sn(k − 1) + (1− β1)σ

2
sn(k), (22)

where β1 is a nonnegative constant (0 ≤ β1 ≤ 1). In another word,

the update is performed only when the reference input has a small

power (i.e. the echo is small) and the error is within a certain range of

an averaged stationary noise estimate. The second condition detects

signal components which have significantly larger power than the

stationary noise and skips update of the stationary noise estimate.

This concept is illustrated in Fig. 3, where σ2
nn(k) is set equal

to e2(k) for simplicity. e2(k), representing σ2
nn(k), and σ2

sn(k) are

expressed by a dashed and a dotted lines, respectively. When e2(k)
is smaller than a scaled-up version of the stationary noise estimate as

is highlighted by a shaded area, σ2
sn(k) is selected as σ2

A(k) (circles

in Fig. 3). Otherwise, e2(k) is used as represented by squares in the

figure. The resulting integrated noise estimate is the line connecting

the circles and squares from the left in Fig. 3.

The initial value σ2
sn(0) of the stationary noise estimate should

be a nonzero positive number. Otherwise, σ2
sn(k) in (20) does not

grow. One of the good initial values is an average of the error e2(k)
for the initial P samples. It is based on a reasonable assumption that

e2(k) contains only stationary ambient noise with no echo nor near-

end signal right after the system is switched on. This is a widely

used assumption in noise suppression for calculating an initial value

for the estimated noise [5].

For the nonstationary noise, a different time constant from that

for the stationary-noise estimation in (20) is used as follows

σ̂
2
nn(k) = γσ̂

2
nn(k − 1) + (1− γ)e2(k), (23)

where γ is a nonnegative constant (0 ≤ γ ≤ 1). A smaller value of

γ provides faster tracking speed. σ̂2
nn(k) finally results in

σ
2
nn(k) =

δ

|σx(k)|
σ̂

2
nn(k), (24)

where the scaling factor on the right-hand side plays a similar role to

that of α in (8).

Although a new algorithm was developed based on [1] and as-

suming echo cancellers, it is possible to apply the same technique
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Fig. 4. Estimated noise and the microphone signal m(k).

Table 1. Parameters for evaluations.

N 1280 β0 0.99
M 80 β1 0.99
σ0 214N ε0 1
L 8N ε1 2

Δ0 (16N)−1 ε3 0.385
P 4N ε4 2
δ 7.6× 1022 γ 0

as in (15), (16), (20), and (23) to other algorithms such as [3] and

other applications. The essence is to mix a stationary estimate and a

nonstationary estimate after independent estimations, which are per-

formed with different time constants.

4. EVALUATIONS

Evaluations were performed in echo cancellation scenarios with two

real speech signals sampled at 16 kHz for the far-end signal (FES)

and the near-end signal (NES). Two echo canceller structures were

used in the evaluation, namely, the fullband structure and a 64-band

complex oversampled subband structure [6]. A real echo-path im-

pulse response in an office was used to generate the echo. Parame-

ters for the fullband structure are illustrated in Tab. 1. The subband

structure basically used the same parameter except that some of them

are scaled according to the decimation factor 80. μ0 was set to 0.2.

Figure 4 depicts the estimated noise and the microphone signal

m(k) for the fullband (FB) and the subband structures. In the latter

case, results in subbands 9 (around 1kHz) and 17 (around 2kHz) are

illustrated. FB, 1kHz, and 2kHz represent the result by the fullband

structure and those in subbands 9 and 17. Single-talk with no NES

is maintained until a double-talk section starts at around 5 sec.

Shown in these subfigures are the estimated noise by the pro-
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posed noise model (A: dotted line), one by the conventional model

(B: solid line), and the microphone signal m(k) in gray. It is clearly

seen in Fig. 4 that the estimated noise by the proposed model (dot-

ted line) takes a larger value than that by the conventional model

(solid line) in double-talk periods. The proposed model often re-

sults in a larger noise estimate even in single-talk periods. This is

because the parameters to discriminate the stationary/nonstationary

noise, namely, ε0 and ε1, were set to modest values. Setting these

parameters to aggressive values may lead to smaller estimates in

double-talk periods. The current values in Tab. 1 were optimized

from a viewpoint of subjective output quality.

Figure 5 compares the output, the ERLE, and the stepsize for the

proposed algorithm with a new noise model and the conventional al-

gorithm. “A” and “B” in each figure represent (8) and (13) with the

same stationary noise estimation in (20). The stepsize by (13) takes

a small value when there is nonstationary noise such as the NES.

A reasonable ERLE is maintained in both single- and double-talk

sections The ERLE is improved by as much as 40 dB due to in-

dependent stationary/nonstationary noise estimation. It is clear that

the output signal is close to the NES with no double-talk detection,

which represents good performance.

Results in the subband structure are illustrated in Fig. 6. The

third subfigure from the top is the fullband output after the synthesis

filterbank. The ERLEs and the stepsizes for subbands 17 (around

2kHz) and 9 (around 1kHz) are shown in the fourth through the sev-

enth subfigures. Similar results to those by the fullband structure

were obtained with the same FES and the NES as for the fullband

structure.

5. CONCLUSION

A robust NLMS algorithm with a novel noise modeling has been

proposed. Independent stationary and nonstationary noise estima-

tions with different time constants followed by integration has been

introduced based on a new noise model to better control the stepsize

for robustness. Evaluations in a fullband and a subband echo can-

cellation scenarios have demonstrated that as much as 40 dB higher

ERLE were obtained compared to the results with the conventional

noise model in double-talk sections with no double-talk detection.
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