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ABSTRACT 

This paper describes a method for designing oversampled 
DFT filter banks (FB) optimized for subband acoustic echo 
cancellation (AEC). For this application, the design require-
ments typically are good echo cancellation quality, low delay, 
small reconstruction error, and low computation complexity. 
Our method explicitly includes a model for echo return loss 
enhancement (ERLE) as part of the optimization criteria. 
Convergence of the high-dimensional, nonlinear optimization 
problem is facilitated by decorrelating the prototype filter 
impulse response via a discreet cosine transform (DCT), dis-
carding many insignificant coefficients and thus reducing the 
dimensionality of the search. The experimental results dem-
onstrate the effectiveness of our design and the effects on the 
performance of AEC, with ELRE improvements on the order 
of 3 dB or better. The method is flexible and could also be 
extended to other application domains. 

Index Terms – oversampled filter banks, modulated filter 
banks, acoustic echo cancellation, adaptive filters. 

1. INTRODUCTION 

In communication systems, the presence of acoustic echo is 
highly undesirable as it degrades the perceived voice quality. 
AEC is an effective approach to mitigate this problem and is 
thus widely used in modern communication devices. Among 
different techniques for AEC, subband adaptive filtering has 
the advantage of high computational efficiency and fast rate 
of convergence [1]. 

Multirate signal processing has been extensively studied 
and remarkable theories have been developed thoroughly [2], 
[3]. Due to the nature of subband adaptive filtering, critically-
sampled FBs are generally considered unsuitable, despite of 
their attractiveness and successful applications in compres-
sion. In [4] it was shown that if critically sampled FBs are to 
be used correctly for adaptive filtering, one must consider 
cross-band filters, at the cost of significantly increased com-
putation complexity. It is also commonly recognized that the 
relaxation of the perfect reconstruction (PR) constraint can 
lead to better prototype filter designs, because it allows for 
further optimization of the filter characteristics. Moreover, 
because the adaptive filters alter the subband signals, the loss 
of PR is less of an issue. Near-perfect reconstruction (NPR) 
FBs can keep the signal distortion to a low enough level, 
while providing more flexible design choices. For this reason, 
oversampled NPR FBs are often chosen in practice, and nu-

merous filter design choices have been proposed (see [5]–[10] 
and references therein). In this paper, we focus on the design 
of NPR oversampled uniform filter banks using discrete 
Fourier transform (DFT) modulation. 

We propose a design mechanism that directly optimizes a 
cost function which includes a quantity that approximately 
models the ERLE of the overall system. Such explicit optimi-
zation is expected to boost the overall performance of AEC in 
comparison to other design methods that are indirect in this 
regard. In [11] a similar attempt was made to quantify the 
performance of subband adaptive filters. Furthermore, we 
introduce a regularization procedure that increases the pros-
pect of reaching a global minimum of the cost function. In-
stead of directly optimizing the coefficients of the prototype 
filter, the actual minimization takes place in the DCT domain, 
where the components are decorrelated and the energy is con-
centrated in a few low frequencies. 

2. UNIFORM OVERSAMPLED DFT FILTER BANKS 

When viewed from the bandpass filter interpretation, the FBs 
first process the input signal x(n), by K bandpass filters de-
noted by hk(n). The resulting signals are decimated by a fac-
tor of M and become Xk(m). With AEC, each of the K chan-
nels has an adaptive filter that minimizes the echo energy, 
resulting in echo cancellation [1]. After processing, the sub-
band signals are upsampled by M, filtered by the synthesis 
filter fk(n), and added to produce the reconstructed signal
ˆ( )x n . We consider oversampled DFT modulated filter banks, 

where M < K and the channel filters are related to each other 
by DFT modulation, 0

2 /( ) ( )k
j kn Kh n h n e  . Furthermore, as 

usual, we choose f(n) = h(n) so that the design problem is 
simplified to a single prototype one. Note that the prototype 
filter responses without any subscript are used interchangea-
bly as the ones with subscript zero throughout the rest of the 
paper. The modulated FBs can also be interpreted as a poly-
phase structure, resulting a connection to lapped transforms 
and efficient implementations [3]. With NPR FBs we relax 
exact reconstruction, and instead seek ˆ( ) ( )x n x n . 

Most existing approaches optimize a selection of design 
criteria that are usually chosen ad hoc as noted in [8]. For 
example, [6] optimizes the combination of the stop band 
energy and the power complementary condition, while the 
recent work in [10] optimizes the peak amplitude distortion. 
In [8] the authors derived explicit bounds for different design 
criteria and the globally optimal solution can be obtained via 
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a convex optimization problem. The method is simplified and 
extended to design two prototypes filter banks in [9]. 

When designing FBs for AEC, the requirements are typi-
cally specified as audio quality, delay and computation com-
plexity as dictated by the overall system design. Correlating 
common filter characteristics to the system specifications is 
not trivial, and in practice requires significant heuristics. It is 
thus desirable to design the FBs by directly targeting the sys-
tem performance specifications, such as ERLE. 

3. FREQUENCY-DOMAIN CONSIDERATIONS 

Let the analysis filters hk(n) and the synthesis filters fk(n) 
have frequency responses ( )k

jH e  and ( )k
jF e respective-

ly. If the subband signals are not modified, the input-output 
relationship can be written in the frequency domain as [12] 
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The first term in (1) is typically referred to as the linear 
component and the second part as the aliasing component. In 
a PR FB, the first term would be a simple delay while the 
second term would equal zero for all frequencies. In a NPR 
FB, neither of above needs to be completely true and aliasing 
is largely a function of the stopband characteristics of the 
channel filter. Indeed, many existing design methods use var-
ious forms of the stopband characteristics as the design crite-
ria. One way to measure the subband aliasing considers the 
total aliasing energy from subsampling: 
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We note that it suffices to look at the case of k = 0 because of 
the modulation relationship of the channel filters. For a well-
behaved prototype filter, Ea should be very low. 

Minimizing Ea alone, however, would not guarantee good 
performance of AEC. In fact, since ERLE is an effective 
measure of the echo cancellation quality, it will be used di-
rectly as a design criterion as shown in the following. For 
each subband k, let us assume that the echo signal in the pass-
bands [2 k/K – /M, 2 k/K + /M] of the analysis filters can 
be completely cancelled. Although this may seem a rather 
bold assumption, it is largely justified as the passband com-
ponents remain linear after decimation. Under ideal condi-
tions, the adaptive filters will converge to the unknown sys-
tem and thus drive the residue errors to a negligible level 
[11]. Note that the presence of “doubletalk” is irrelevant to 
the validity of this assumption. Thus, we can incorporate the 
“ideal” echo canceller into the analysis filters: 
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Replacing ( )k
jH e in (1) with (3) yields a model for the 

echo residual signal: 
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While (4) looks similar to the aliasing term in (1), it is ac-
tually a different quantity. Obviously, the smaller ˆ ( )k

jX e is, 
the higher the echo cancellation quality or ERLE will be. 
Hence a reasonable design criterion is to minimize 
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which represents the total echo residual energy of the “ideal” 
echo canceller when the input signal ( )jX e  is white. While 
real signals are most likely not white noise, this simplification 
allows us to construct a signal independent design criterion. 
Note that minimizing Er is not the same as enforcing an NPR 
condition via the minimization of the aliasing term in (1). 

Another frequency domain characteristic is the linear 
component of (1). While the stopband behavior is measured 
by Ea, we have not developed any constraint on the passband. 
Considering that the prototype filter should not deviate much 
from an ideal lowpass filter, we seek to minimize the pass-
band ripple energy of the analysis filter given by 
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Experiments confirm that minimizing Ep helps to stabilize the 
optimization procedure. 

4. TIME-DOMAIN CONSIDERATIONS 

While the frequency domain characteristics are necessary for 
designing a good prototype filter, they are not sufficient. For 
example, one may satisfy the frequency domain criteria by 
relying mostly on the time domain aliasing cancellation. 
However, because the gain factors for each subband are sub-
ject to independent changes over time as a result of AEC, 
time domain cancellation becomes much less effective. It is 
thus reasonable that a good solution should strike a balance 
between time- and frequency-domain criteria. 

Similarly to the frequency domain version, the input-
output relationship of the FB can be written in time as [12] 

 ˆ( ) ( ) ( ) ( )m m

m s
x n x n sK f n h sK n  (7) 

where 0( ) ( )mf n f n mM  and  0( ) ( )mh n h n mM . From 
(7) it follows that, assuming the FB has a delay of M samples, 
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PR can be accomplished by satisfying the following condi-
tions: 

 ( ,1) 1, for all  m

m
q n n  (8) 

 ( , ) 0, for all 1 and all m

m s
q n s s n  (9) 

where ( , ) ( ) ( )m m mq n s f n h sK n . These are generalized 
conditions compared to the approach taken in [5], where the 
time domain reconstruction error is measured by an “impulse 
response” (we use quotes because strictly speaking, the over-
all FB, even without AEC subband processing, is not a linear 
time-invariant system; it’s a periodically time-varying system 
with period M). 

Following (8) and (9), the two time-domain criteria are 
then defined as the direct term: 

  
2

( ,1) 1p m
n m

q n  (10) 

and the aliasing term: 

 2( , ) ( , )a m
n s m

w m s q n s  (11) 

where w(m, s) is a weighting function determined according 
to a human psychoacoustic model [13]. 

5. COMPUTATIONAL ISSUES 

In general, there is no guarantee that simultaneous minimiza-
tion of Er, Ea, Ep, p and a, according to (2)–(11) would be 
possible. Thus, a practical approach is to use a cost function 
that linearly combines the error metrics, in the form 
 r a p a pE E E  

where , , , , and   are positive weights. Empirically, we 
determine these constants such that Er is the dominant cost, 
about an order of magnitude higher than the aliasing con-
straints Ea and a, while the “in-band” metrics Ep and p 
receive half the weight of Ea and a. 

In typical applications the prototype filter has hundreds of 
taps, so it lies in a relatively high dimension for straight use 
of common optimization routines to be effective. Because  
h(n) is low-pass in nature, its DCT spectrum decays quickly 
with frequency. Thus, we can efficiently approximate h(n) by 
using only a small number of its DCT coefficients, which 
become the free variables, significantly reducing the dimen-
sionality of the optimization problem. 

The frequency domain error metrics, Er, Ea, and Ep, re-
quire the integration from –  to ; we approximate that via 
evaluation on a dense grid of frequencies. The time domain 
metric p and a are evaluated in a finite range of n due to 
periodicity. It can be shown that in practice computation of all 

these metrics can be done efficiently; we do not provide the 
straightforward details due to space limitations. 

6. RESULTS 

In the following, we use a particular design example to 
demonstrate the effectiveness of the proposed method, al-
though it should be understood that our method is versatile 
enough to handle general design conditions. For the multi-
variable minimization, we use the MATLAB fminsearch 
function, a simplex search method. The implementation runs 
in MATLAB and typical takes a few minutes to converge on 
a typical desktop computer. For this example, the system re-
quirements on the FB are the following: audio sampling rate 
= 16 kHz, delay < 4ms, FFT size < 128 (due to the complexi-
ty consideration), and ERLE > 30dB for white noise input. 
With these in mind, the following dimensions of the FB are 
now fixed: M = 64, K = 128. 

With these parameters, we first design a prototype filter 
with the windowing approach, using a Kaiser window. The 
outcome of this first step is used as the initial condition for 
the optimization loop. With the Kaiser window, let p = s, 
the passband and stopband deviations, range from 0.1 to 0.01. 
The transition bandwidth is F = /2M. Following [12], the 
length N of the prototype filter is estimated at the range [220, 
576]. For ease of implementation, we choose N = 3M which 
stands in the middle of the range. Note that while the above 
method of estimating N is useful, it does not imply a limita-
tion of our design method. It is certainly possible to design 
the prototype filters at different lengths and optimize for N. 

Tab. 1 shows the values of the different design criteria 
and the overall cost function at different iterations. We see 
that at the end of optimization, Er is improved by more than 
7dB, Ea by 5dB, and a by 3dB, while other metrics decrease 
to or hold at the desirable levels. Figures 1 and 2 show the 
impulse and frequency responses of the initial filter and the 
optimized filter, respectively. 

Figure 1. Impulse responses of the initial and opti-
mized filters. 
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The top line in Fig. 3 shows the ERLE of the full-band 
output from AEC as a function of time in seconds, using the 
optimized filter. Here the input to AEC is a white noise signal 
convoluted by a room impulse response filter. We can see that 
after about 15 seconds, the ERLE converges to around 
34.5dB. In the steady state, the optimized filter outperforms 
the initial Kaiser window design (middle line) by 3.5dB. 

By contrast, when we remove the ERLE metric Er from 
the cost function, the resulting filter is not as effective. At the 
end of the iterations, we are still able to achieve superior or 
comparable levels for all design criteria except for Er (see the 
last row in Tab. 1). However, as shown in Fig. 3, the steady 
state ERLE of this experimental filter (bottom line) actually 
regresses from the initial filter, dropping by a margin as pre-
dicted by Er. 

7. CONCLUSION 

We present a technique for designing oversampled DFT filter 
banks optimized for AEC. Our design technique directly tar-
gets the system performance (ERLE) jointly with other desir-
able criteria and takes the guesswork out of the designers’ 
hands. The effectiveness of our proposed method is demon-
strated by a design example as well as experimental results 
performed with subband AEC. It is worth noting that our ap-
proach can be generalized to design other types of filter 
banks, such as those based on two prototypes. Applications 
other than AEC may also benefit from the same design phi-
losophy by exploiting domain-specific error metrics. 
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iter. Er (dB) Ea (dB) Ep (dB) a (dB) p (dB)
1 -27.06 -25.80 -29.27 -15.28 -33.49 0.1293

401 -29.16 -27.65 -30.98 -15.49 -34.16 0.0829
801 -31.75 -31.35 -29.37 -16.03 -32.36 0.0536

1201 -33.68 -31.21 -28.48 -16.30 -32.47 0.0441
6001 -34.17 -30.84 -29.21 -17.77 -35.36 0.0386
end -34.10 -30.58 -29.55 -17.88 -36.25 0.0382
alt -30.98 -31.49 -30.64 -18.39 -29.95 0.0294

Table 1. Design criteria and cost functions at different 
iterations. 

Figure 3. ERLEs of the initial, optimized, and ex-
perimental filters. 
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Figure 2. Frequency responses of the initial and op-
timized filters. 
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