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ABSTRACT

Nonlinear acoustic echo cancellers (NLAEC) are becoming
increasingly important in hands-free applications. However,
in some situations, an NLAEC is inferior to a linear AEC,
especially when the channel generates a negligible (or no)
nonlinear echo. In general, the ratio of the linear to nonlin-
ear echo signal power is unknown a priori, and will vary over
time, thus making it difficult to know if an NLAEC would im-
prove or degrade the cancellation. In this paper, we present
two novel solutions to this problem based on the adaptive
combination of linear and nonlinear echo cancellers. Both
solutions perform efficiently regardless of the level of nonlin-
ear echo. The benefits and robustness of both schemes are
illustrated by experiments using Laplacian colored noise and
speech input signals.

Index Terms— Adaptive filters, Volterra filters, non-
linear acoustic echo cancellation, combination of filters.

1. INTRODUCTION

In recent years, nonlinear acoustic echo cancellation (NLAEC)
schemes have become increasingly important, not at least due
to the popularity of hands-free devices and mobile phones
that use low-cost amplifiers and loudspeakers introducing
significant nonlinearities into the acoustic echo path. Adap-
tive Volterra filters are widely used for NLAEC because
of their generic structure, which can be considered as a
straightforward generalization of linear adaptive filters [1].
Although Volterra filters decrease the residual nonlinear
echo, they may not always be superior to a plain linear filter:
For instance, if the echo cancellation scenario presents a low
level of nonlinear echo, non-negligible gradient noise produced
by the adaptation of second and higher order kernels degrades
the performance of the NLAEC, so that the use of a simple
linear adaptive filter would be more efficient. Note that, in
general, the power of nonlinear echo is unknown, and will
be time-varying for nonstationary signals like speech. Thus,
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the selection of the most effective adaptive filter, linear or
Volterra, is not a trivial problem since it requires a priori
knowledge about the echo channel and the signal statistics.

Combinations of filters constitute an interesting way to
mitigate different kinds of compromises involving adaptive fil-
ters [2, 3]. In this approach two or more adaptive filters adap-
tively combine their outputs obtaining a combined scheme
that performs at least as well as the best contributing filter.
Due to their simplicity, these schemes have been used in sev-
eral areas of adaptive signal processing in communications
and control applications, including blind equalization [4] and
signal characterization [5], among others.

In this paper, we present two novel schemes for mod-
elling nonlinear systems employing the principle of combin-
ing several filters. The first one consists of a combination of
a linear filter and a Volterra filter, while the second one is a
more elaborate scheme based on a combination of kernels —a
generic concept for Volterra filters. Both schemes fulfill their
promises independently of the linear-to-nonlinear power ratio
(LNLR) of the echo signal, obtaining the desired effectiveness
of the Volterra filter when necessary while performing like the
linear filter for low levels of nonlinear echo.

The rest of the paper is organized as follows: In Section 2
both schemes for improved nonlinear echo cancellation are
presented. The experiments that corroborate the benefits
and robustness of both solutions are included in Section 3.
Finally, conclusions are presented in Section 4.

2. PROPOSED SCHEMES

In this section, we present two novel schemes for NLAEC
which are robust to different levels of the LNLR. Both sys-
tems include second-order Volterra filters, with a linear and
a quadratic kernels, and could straightforwardly be extended
to generic Nth-order Volterra filters.

2.1. ‘Combination of filters’-Scheme (CFS)

The first scheme consists of a straightforward convex com-
bination of an adaptive linear filter, w(n), and an adaptive
Volterra filter including linear and quadratic kernels, h(n)
and H(n), respectively, where the triangular representation
has been used for the latter [1]. The outputs of the linear and
the Volterra filters, can be expressed as

yr(n) = w" (n)u(n) (1)
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yv(n) = yrr(n) +yox (n) @
=h"(n)u(n) + u” (n)H(n)u(n)

where u(n) denotes the vector of the input signal samples,
and yrx(n) and yox (n) represent the outputs of the linear
and quadratic kernels, respectively. The output of the com-
bined filter reads:

y(n) = A(n)yr(n) + [1 = A(n)]yv (n), 3)

where A(n) is an adaptive weighting parameter that controls
the combination.

According to [3], for a good performance of the combi-
nation scheme, the contributing filters should update their
coefficients following their own rules, in order to minimize
the power of their own error signals. When using standard
gradient descent rules, this results in

w(n+1) = w(n) + prec(n)u(n),
h(n+1) =h(n) + pvrev(n)u(n), (4)
H(n + 1) = H(n) + pvae (n)u(n)u” (n),

where pr, pyvr and pyg are step sizes, and er(n) = d(n) —
yr(n) and ey (n) = d(n) — yv(n) are the errors produced by
the linear and the Volterra filters, respectively, and d(n) is the
reference signal to be approximated by the adaptive filters.

The mixing parameter A\(n) can also be updated using
a gradient descent method with the aim of minimizing the
square of the error produced by the combined filter, e(n) =
d(n) — y(n). However, instead of directly adapting A\(n), we
will rely on the adaptation of another parameter a(n), which
defines A(n) via a sigmoidal activation function', A\(n) =
sgmfa(n)] = [1 +e~*(V) 1.

Recently, a new update rule for a(n) has been presented
in [6]. By normalizing the adaptation of a(n), this rule allows
an easier selection of the step size 4, and provides improved
performance in scenarios with time-varying signal-to-noise ra-
tio (SNR). This normalized rule reads can be expressed as:

a(n+1) = a(n)+pp(tz) Am)[1=A(n)]e(n)lev (n) —er(n)], (5)
where p(n) = Bp(n—1)+(1—08)[ev (n)—er(n)]? is an estimate
of the power of [ev(n) — er(n)] (see [6] for more details).

The functionality of the presented scheme can be de-
scribed as follows. When the LNLR is low (i.e., there is a
significant level of nonlinear echo), the Volterra filter repre-
sents an effective model of the channel, and minimization of
the overall error yields A(n) — 0, so that the y(n) =~ yv(n).
The opposite occurs for high LNLR, with A(n) — 1 and
y(n) = yr(n), so that the combination is equivalent to a
linear filter, avoiding the gradient noise caused by the adap-
tation of the Volterra quadratic kernel. Figure 1(a) summa-
rizes our first proposal for NLAEC, to which we will refer in
the following as combination of filters scheme (CFS).

2.2. ‘Combination of kernels’-Scheme (CKS)

Rather than combining adaptive filters, our second approach
for NLAEC foresees just one Volterra filter, replacing one of

Mntroduction of parameter a(n) and the activation function is
justified as an easy way to keep A(n) € (0, 1) and to reduce gradient
noise near A\(n) = 1 or A(n) = 0. The interested reader is referred
to [3] for further details.
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Fig. 1. Block diagrams for the proposed NLAEC schemes.
Adaptation loops and error signals are omitted for simplicity.

its kernel by a convex combination of kernels. For instance,
if we consider a second-order Volterra filter, and replace its
quadratic kernel, the overall output of the new Volterra filter
would be given by

y(n) = yrr(n) + yor

— yoxe(n) + n(myar(n) + [L— n()yga(n) )

where yo1(n) and yg2(n) are the outputs of two kernels in
the combination and 7n(n) € [0,1] is a mixing parameter.

To get the most out of all kernels, each should be updated
using its own adaptation rules and error signal: The linear
kernel should pursue the minimization of the overall error
e(n) = d(n) — y(n), while the kernels inside the combination
should adapt independently of each other, to minimize the
square of e;(n) = d(n) — [yrx (n) + yoi(n)], i =1,2.

Finally, n(n) can again be adapted using a gradient de-
scent rule. Defining n(n) = sgm[a’(n)], and taking derivatives
of €?(n) with respect to a’(n), leads to

a’(n+1) = a’(n)+pa [ye1(n) —yaz (n)]e(n)n(n)[1-n(n)] (7)

The above expression can be interpreted as a least-mean-
squares (LMS) update rule, where [yg1(n) — yg2(n)] plays
the role of the input signal. Using similar arguments to those
in [6], a more convenient normalized adaptation rule would

be

@ (n 1) = () + ()L = nm)]eCn)lyan (n) — yaa(m)]

(8)

with p'(n) = 'p'(n — 1) + (1 — 8)[ye1(n) — yo2(n)]*.
The generic Eq. (6) allows that the kernels implementing
yo1(n) and yg2(n) can differ in any way (e.g., they could



implement different kernel sizes or use different adaptation
rules, etc). Since in this paper we are interested in schemes
that work well for unknown, time-varying, LNLR, we will
consider that yo1(n) implements a filter with very slow adap-
tation (minimizing the corresponding gradient noise). An ex-
treme, but very interesting special case, results when all taps
of Hi(n) are set to zero Vn (i.e., there is no need to adapt
the coefficients of this virtual kernel): When using an all-zeros
kernel, the overall output is given by

y(n) = yrr(n) + [1 — n(n)]ygz(n) 9)

so that the role of n(n) can be interpreted as that of deciding
whether using a quadratic kernel would improve or degrade
the overall cancellation performance.

Rewriting (9) as

y(n) = n(n)yrx(n) +[1 = n(n)][yrr (n) +ye2(n)]  (10)

shows the similarity to (3) with the notable difference that
the common linear part is now used by both the linear and
the Volterra filter. In computational terms this means that
the number of operations needed for implementing the novel
scheme of Fig. 1(b), and which we refer to as combination
of kernels scheme (CKS), is only slightly larger than that for
a standard Volterra filter, while CFS requires adaptation of
two linear filters.

3. EXPERIMENTS

In this section, we study the performance of CFS and CKS in
echo cancellation scenarios with different LNLRs. Two kinds
of input signals will be used: Laplacian colored noise, and
real speech. The reference signal follows this model:

d(n) = hgu(n) + a(n)uT(n)Hou(n) + eo(n) (11)

where hy and Hy are the true linear and quadratic kernels
of size 320 and 64 x 64, respectively, both measured from
a small low-cost loudspeaker, a(n) is a variable introduced
to control the LNLR, and eo(n) is a Gaussian white noise
providing 20 dB SNR in the absence of nonlinear echo.
Settings for the NLAEC schemes are as follows: the linear
filter of CFS is adapted using a normalized LMS (NLMS) rule
with step size pur, = 0.3. The kernels of the Volterra filters
of CFS and CKS use the same step size, but adapting with
NLMS rules where the input power is estimated separately
for each kernel (SNLMS, [7]). For CKS, an all-zeros kernel
is used instead of Hi(n) (i.e., yoi1(n) = 0, Vn). Finally, the
mixing parameters are adapted using (5) and (8), respectively
for CFS and CKS, with 1, = ptor = 0.5 and 8 = 8" = 0.9.

3.1. Laplacian colored noise as input

Using Laplacian colored stationary noise as input signal, we
will first analyze the convergence and stationary behavior
of the proposed NLAECs for different LNLRs. As a figure
of merit, we will estimate the resulting excess mean-square-
error, EMSE(n) = E{[e(n) — eo(n)]?}, averaging over 1000
independent realizations.

The behavior of CFS, as well as of its linear and Volterra
components, is illustrated in Fig. 2(a). As expected, when
only linear echo is present (LNLR = oo dB, ¢t < 10 s) the
Volterra canceller achieves a larger steady-state EMSE than
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Fig. 2. Cancellation performance of CFS and CKS. (a)
EMSE evolution of CFS and CKS, as well as of the linear
and Volterra components of CFS (denoted as LF and VF,
respectively). (b) Time evolution of the mixing parameters
A(n) and n(n).

the linear filter alone, and CFS retains the better perfor-
mance of the linear scheme with A(n) ~ 1 (see also A(n) evo-
lution in Fig. 2(b)). The opposite occurs for small LNLR (see
t > 20 s, with LNLR = —10 dB). In this case, the quadratic
kernel of the Volterra filter is key to obtain a correct can-
cellation, thus A(n) = 0, so that CFS achieves the smaller
EMSE of the Volterra scheme. Note that for intermediate
levels of nonlinear echo (LNLR= 8 dB during 10 s < ¢ <
20 s) CFS can simultaneously outperform both contributing
filters. This property of convex combinations of filters has
been theoretically explained in [3], by a small correlation be-
tween the errors of the component filters, and by the fact
that CFS averages their outputs (note that A(n) 2 0.5 in this
situation), thus decreasing the error variance.

Fig. 2 also shows the cancellation performance of CKS,
which can be described in very similar terms to those for CFS,
with 7(n) ~ 0 when there is a significant level of nonlinear
echo (see (9)). For large LNLR, n(n) ~ 1 and, in the light
of (9), CKS behaves as a linear filter, thus getting rid of
the gradient noise of the quadratic kernel that would degrade
the cancellation. Note that in this situation the quadratic
kernel can still be adapted without divergence problems, since
e2(n) = d(n) — [yxr(n) + yg2(n)] = —yq2(n), so that the
update algorithm tries to minimize its own output.

The stationary behavior of CFS and CKS has also been
studied for other LNLRs. Fig. 3 shows the steady-state
EMSE of these schemes as a function of the LNLR. These re-
sults have been obtained by averaging the EMSE over 25000
iterations once the algorithms had converged, and over 200
independent realizations. It can be seen that, for all values of
the LNLR, CFS performs at least as well as its components,
with a significant margin —5 dB < LNLR < 15 dB where
the combination outperforms both components. CKS offers
a very similar behavior for all values of LNLR. As discussed
at the end of Subsection 2.2, CKS is computationally sim-
pler than CFS, and can therefore be considered as a more
attractive scheme for NLAEC.
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Fig. 3. Steady-state EMSE of CFS and CKS, and of the
linear (LF) and Volterra (VF) components of CFS.
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Fig. 4. Behavior of the CFS NLAEC. From up to down:
speech input signal; ERLE achieved by CFS and its compo-
nent filters; CFS mixing parameter evolution, A(n).

3.2. Speech as input

In this subsection we show the performance of both schemes
with real speech. This experiment also represents the first
instant where the convergence properties of the CF'S and CKS
are studied for nonstationary signals. In this case the Echo
Return Loss Enhancement (ERLE) is used as figure of merit:

_ B{ld(n) — eo(n)]*}
ERLE(n) : 1010gE{[e(n) oo ()7} [dB] (12)

Fig. 4 shows the CF'S cancellation performance, compared
to that of the linear and the Volterra filters, in a scenario
where the LNLR changes from oo to 2.5 dB at ¢ = 5 s, and
from 2.5 dB to —10 dB at t = 10 s. Although the perfor-
mance is more irregular due to the nonstationary nature of
speech, results are similar to those for Laplacian input: The
combination behaves as the best component for very large or
very small LNLR. For intermediate nonlinear echo levels (5
s < t < 10 s) the combination performs slightly better than
both component filters. Again, CKS achieves a very similar
performance, as illustrated in Fig. 5.

Table 1 shows the average ERLE calculated over each pe-
riod of constant LNLR. The proposed echo cancellers achieve
similar ERLE values in all cases (differences observed are not
very significant)behaving at least as the best of the linear
and Volterra filters, or even better than any of them (for
LNLR = 2.5 dB). From Table 1, it can also be seen that
the averaged values of A\(n) and n(n) increase (as expected)
with the LNLR, so that this values could also be exploited as
indicators of the level of nonlinear echo.
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Fig. 5. ERLE comparison for CFS and CKS.

LNLR [ 30T o) ERLE [dB]

[dB] ! LF | VF | CFS | CKS
o | 085 | 078 [ 119 | 86 | 11.9 | 11.9
25 | 056|045 | 52 | 51 | 87 | 9.1
10 | 007 | 012 | 1.3 | 13.3 | 133 | 137

Table 1. Cancellation performance of CFS and CKS with
speech input signal (averaged results).

4. CONCLUSIONS

In this paper, we presented two novel NLAECs based on com-
bination schemes. The first scheme (CFS) consists of a com-
bination of a linear and a Volterra filter, while the second
(CKS) is based on the combination of a quadratic and an all-
zeros kernel. Both schemes offer improved performance over
the use of a single (linear or nonlinear) filter when the LNLR
is unknown or time-varying. Additionally, CKS is compu-
tationally more efficient than CFS, and only slightly more
complex than a standard Volterra filter, thus offering a very
attractive solution to nonlinear echo cancellation.

Future work includes further developments following the
combination of kernel approach, as well as the extension of the
proposed schemes to higher order nonlinear echo cancellers.
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