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ABSTRACT

This paper discusses an approach to extract constituent per-
cussive bar-long patterns in a music piece given as acous-
tic signal and to analyze the music structure with a map of
constituent rhythmic patterns. Possible applications include
music genre classification, music information retrieval (MIR)
and music modification such as replacing rhythmic patterns
with others. We propose a mathematical method based on
One-pass DP algorithm and k-means clustering to extract unit
percussive rhythmic patterns. As the result of identifying and
localization the unit patterns in the entire piece, we obtained
a music structure in the form of a map of rhythmic patterns.

Index Terms— Percussive sound, Spectral analysis, Dy-
namic programming, Pattern clustering method, feature ex-
traction

1. INTRODUCTION

For the purpose of music information retrieval, rhythm-
related features have the high potential in characterization
of music, particularly related to genres. For example, the
distinction between samba and tango exists primarily in their
bar-long rhythmic patterns.
Obviously, rhythm is one of the most fundamental ele-

ments of music to characterize it. From a microscopic view-
point, unit rhythmic patterns are often the elements to form
measures and beats. From a macroscopic viewpoint, multiple
rhythmic patterns included in a whole music piece very often
form the entire structure of the piece. If possibly multiple unit
rhythmic patterns in the music piece can be extracted properly
and the music structure can be analyzed in terms of the use of
unit rhythmic patterns, they will be helpful in characterization
of the music and then be useful in music genre identification
and music information retrieval.
In the past research, the most fundamental aspect of

rhythm analysis research was related to beat tracking [1] .
Another related work was extracting beat histogram which
was a rhythmic content feature, and discussed precisely in [2].
Another work related to rhythmic patterns dealt with measur-
ing the similarity of rhythmic patterns [3]. In this work,

spectral features were extracted and these patterns were com-
pared using dynamic time warping (DTW). However, it was
not successful in application to the real music pieces. Works
which dealt with extracting rhythmic patterns are typified by
[4] which extracts a periodical pattern from acoustic signals
heuristically, and by [5] which extracts features based on
the periodicity of spectrum. They successfully discriminate
genres between the rhythmical songs like samba and tango.

2. RHYTHM SEGMENTATION AND LABELING

2.1. Four Fundamental Problems in Rhythm Analysis

The problem here is a “chicken-and-egg” problem: a set of
fundamental bar-long rhythmic patterns may be determined
only after unit boundaries in the music piece are given, and
vice versa, i.e., unit boundaries can be determined only after
unit patterns are given. Another problem is that the tempo
may fluctuate. The unit rhythm pattern may stretch or shrink.
There is another practical problem that is typical in music
(especially, modern popular music and jazz) - it contains
harmonic sounds, which can disturb the spectrogram-based
rhythm analysis.
Therefore the problems in extraction of rhythmic unit pat-

terns from the input music signal can be summarized as con-
sisting of the following four problems:

(i) the input acoustic signal may contain not only percus-
sive sounds but also melodic/chordal sounds,

(ii) there may be fluctuations in tempo and in pattern itself
made by the performer,

(iii) unit segmentation is unknown, and
(iv) unit rhythmic patterns are unknown.

In the next a few subsections, we discuss an approach to solve
these four problems.

2.2. Emphasizing Percussive Components

The first problem is that harmonic and percussive sounds are
mixed in the observed spectrogram. To achieve separation of
these two components without prior knowledge, we can em-
ploy Ono’s method [6] to decompose music signal into har-
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Fig. 1. The original spectrogram (left) and the percussion-
emphasized spectrogram (right) of a popular music piece
(RWC-MDB-G-2001 No.6).

monic and percussive components which would emphasize
percussive rhythmic patterns.
The left side of Fig. 1 shows a typical instance of spectro-

gram. Generally, harmonic components in the spectrogram
tend to be continuous along the time axis near particular fre-
quencies, i.e., fundamental frequencies and their overtones.
On the other hand, percussive components tend to be contin-
uous along the frequency axis while temporally short. Hav-
ing performed the EM algorithm to estimate mask functions,
we can then use them to separate percussive sounds from the
audio input signal. By applying this algorithm to the spec-
trogram on the left side of Fig. 1, we were able to separate
the harmonic and percussive components, and the emphasized
percussive components are shown on the right side of Fig. 1.

2.3. Iterative Update of Rhythmic Structure and Unit
Patterns

If the true set of unit rhythmic patterns is given as templates,
the problem (iii) is parallel to the continuous speech recog-
nition problem where One-Pass DP (Dynamic Programming)
algorithm [7] can be employed to find the sequence of uttered
words. Accordingly, One-Pass DP divides a music piece into
segments, each optimally corresponding to template patterns.
Also, because of its flexibility in time alignment, the problem
(ii) is solved simultaneously.
The problem (iv)—the need to estimate each of funda-

mental unit rhythm pattern—is a chicken-and-egg problem if
both segmentation and unit rhythmic patterns are unknown.
For that reason, it is necessary to estimate segmentation and
unit patterns simultaneously. While this kind of unsupervised
training problems have been solved in various ways, here the
k-means clustering algorithm in combination with the One-
Pass DP algorithm is employed. Unit rhythmic patterns and
the music structure are trained iteratively. Fig. 2 illustrates the
flow of this algorithm. Considering a probabilistic model in
which the input patterns are drawn from the template patterns
according to a certain distribution, the problem is solved by
maximizing the likelihood.

2.4. Rhythmic Structure Analysis by One-pass DP Algo-
rithm

One-Pass DP algorithm gives the optimal segmentation of in-
put spectral patterns by giving template patterns like in con-
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Fig. 2. The flow diagram of the system.

tinuous speech recognition. As most of music pieces with
percussive instruments keep their tempos, we can design the
locally allowed paths in DP as in Fig. 3, to reduce the range
of a time fluctuations.
Assuming that the series of spectra is observed composing

probabilistic distributions which expect corresponding spec-
tra in templates, a probabilistic model can be designed, and
we can assume that the sound is close to that in templates
when its output probability is high.
Percussive spectral time-frequency components are de-

fined as P (tx, fn) = P (x, n) where tx is time and fn is
logarithmic frequency. Spectral components at a time tx are
defined as a vector rx = (Px,1, . . . , Px,N )T . Similarly, tem-
plate spectrogram composed of components Mm(ti, fn) =
Mm,i,n (m = 1, . . . , M) are defined as series of vectors
μm,i = (Mm,i,1, . . . , Mm,i,N )T .
The output probability of the vector rx from the spectrum

of the frame i in templatem is written as

pm,i(rx) =
1

(2π)
N
2 |Σm,i| 12

exp
(
−1

2
eT

m,i,xΣ
−1
m,iem,i,x

)
(1)

where em,i,x = (μm,i − rx), and Σm,i is the diagonal co-
variance matrix for the time i in the templatem.
According to One-Pass DP algorithm, logarithmic like-

lihoods ln(pm,i(rx)) are multiplied by the weight w and
summed up one after another. The weight can be designed
as depicted in Fig. 3. In the end, an alignment according to
given templates is calculated by finding the likeliest path, and
a music structure composed of rhythmic pattern templates is
estimated.
The alignment calculated above gives a correspondence

between the spectrum rx(a) of the time index x(a) and the
template spectrum μm(a),i(a) of the time index i = i(a) in
template m = m(a). Therefore, the summation of logarith-
mic likelihood can be written as
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Fig. 3. Local continuity constraints with slope weighting.

DA = − 1
2

( A∑
a=1

(
N log(2π) + log |Σm(a),i(a)|

) · w(a)

+
A∑

a=1

em,i,x(a)T Σ−1
m(a),i(a)em,i,x(a) · w(a)

)
(2)

where em,i,x(a) = (μm(a),i(a) − rx(a)).

2.5. Updating Unit Patterns by k-means Clustering
Next, like in k-means clustering, central patterns of each clus-
ter are calculated and are set as new template patterns. Each
template pattern is calculated by averaging segments labeled
as the same cluster, keeping the alignment given by One-Pass
DP algorithm. The total likelihood DA calculated in One-
Pass DP algorithm (Eq. 2) can be maximized by calculating
such a weighted average. Therefore, the total likelihood DA

is increased in each update of the template patterns, and the
convergence is guaranteed.
The template patterns are updated based on the max-

imum likelihood estimation and their parameters will be
θ̂ = (μ̂m,1, . . . , μ̂m,Im

, Σ̂m,1, · · · , Σ̂m,Im). Setting ∂DA

∂μm,i

to 0, μ̂m,i is written as

μ̂m,i =

∑
a∈Am,i

rx(a) · w(a)∑
a∈Am,i

w(a)
(3)

where Am,i = {a|m(a) = m, i(a) = i}. In a same way,
setting ∂DA

∂Σm,i
to 0, Σ̂m,i is written as

Σ̂m,i =

∑
a∈Am,i

em,i,x(a)em,i,x(a)T · w(a)∑
a∈Am,i

w(a)
. (4)

Therefore, the total likelihood calculated after this update,
D′

A, satisfies

D′
A ≥ D̂A = max

θ
DA ≥ DA (5)

and this iterative update never reduces the total likelihood, so
the convergence is guaranteed.

2.6. Procedural Summary of the Algorithm
The discussed algorithms above are summarized in the fol-
lowing procedure:

1. Emphasis of Percussive Sounds: by using Ono’s
method, percussive components of the series of spec-
trogram are separated.
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Fig. 4. The BIC calculated at every number of template pat-
terns.

2. Giving the Initial Template Patterns for One-Pass DP
Algorithm: the initial template patterns are made as av-
erage rhythmic patterns in an input music or as average
patterns of typical rhythms in every genre.

3. Giving the Optimal Segmentation: using One-Pass DP
algorithm, a segmentation is calculated from given ref-
erence patterns.

4. Update of the Reference Patterns: like in k-means al-
gorithm, the centroids of the clusters are recalculated
and updated as new reference patterns.

5. Iteration: repeat step 3 and 4 until the dissimilarity cost
calculated in One-Pass DP algorithm converges.

3. EXPERIMENTAL EVALUATION
3.1. Data Set
The purpose of this experiment is to confirm that the algo-
rithm above can be applied to real music pieces which contain
harmonic components as well as percussive components.
We used WAV files from the RWC music database [8]

down-sampled to 22.05 kHz single-channel files. In this pro-
cess, we used a Hanning window with 1024 samples and
50% overlap at performing a Short Time Fourier Transform
(STFT). Using Ono’s method, we obtained the percussive
spectral patterns and spectrum of each frame was summed up
to 8 dimensional spectral vectors to reduce the computation
time.

3.2. Results
We applied our algorithm to a dance music: RWC-MDB-G-
2001 No. 16 in the data set above. We determined the number
of template patterns by using the Bayesian information crite-
rion (BIC). Fig 4 shows the calculated BIC at every number
of templates, and it means the optimal number of templates is
4. Therefore we gave 4 initial template patterns and conver-
gence of our algorithm, the alignment became the right side
of Fig. 5 and the fundamental unit rhythmic patterns learned
are illustrated on the left side of Fig. 5.
By listening to this music, we were able to tell that pattern

1 was repeatedly played and once in four measures, pattern 2
was played. Following such fundamental rhythms, an inter-
val rhythmic pattern was played (pattern 3), followed by a
pattern in the climax part (pattern 4). This can be clearly seen
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Fig. 5. 4 extracted percussive unit rhythmic pattern spectro-
grams from a dance music(No. 16) (left) and the correspond-
ing alignment, i.e., “Rhythm Map” (right).

on the right side of Fig. 5, which depicts a music structure
in the form of a map of rhythmic patterns, which we named
“Rhythm Map”.
Another example of a popular music “Rhythm Map”

(RWC-MDB-G2001 No. 6) is illustrated on the right side
of Fig. 6, and the left side of Fig. 6 shows 3 corresponding
rhythmic patterns.

3.3. Evaluation
We have evaluated how the proposed algorithm classifies the
rhythmic patterns compared to how the humans do it. We
applied the same algorithm to 4 music pieces: RWC-MDB-
G-2001 No. 6, No. 16, No. 19, and No. 26.
We developed an interface and asked subjects to classify

the rhythmic patterns with it to define “correct” answers.
Then, we compared the rhythmic pattern labels we obtained
and classified segmentation the algorithm estimated. For
evaluation, we calculated the ratio of correctly classified
frames.
The result is shown in Table 1. Even though this algo-

rithm has a bootstrap problem, and so its accuracy depends
on the initial patterns, basically we could confirm the validity
of classification, which was close to how humans do it. Our
algorithm worked particularly well for dance music which
have strong percussive components. The soul music (No. 26)
above had complex percussive patterns and the main reason
for low accuracy was the rotation of the patterns.

4. CONCLUSIONS

We discussed an approach to extract unit rhythmic patterns
of percussive components in music signals and to analyze
and display the music structure in a map form. We used
Ono’s method to extract percussive components from music
signals and proposed an algorithm with which the unit rhyth-
mic patterns and “Rhythm Map” are learned iteratively using
a combination of One-Pass DP and k-means clustering algo-
rithms. Experiments over music pieces with percussive parts
from various genres confirmed that our algorithm could ex-
tract proper rhythmic patterns and a rhythm map to locate the
rhythmic patterns in the music piece.
Future works include improvement of segmentation into

unit patterns, i.e. rotation problem, using additional clues
such as transition of melodic and/or chordal components. We
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Fig. 6. 3 extracted unit rhythmic pattern spectrograms from
a popular music(No. 6) (left) and the corresponding Rhythm
Map (right).

Table 1. Percentage of correctly classified segments.
Music Correct Frames (%)
No.6 (Pop) 83.32
No.16 (House) 97.87
No.19 (Techno) 87.25
No.26 (Soul) 69.73

also plan to apply the method to more recordings. After that,
this algorithm can be applied to the genre classification in
which the template patterns are learned from every genre and
the proportions of those representative patterns are extracted
as a features vector using dynamic programming.
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