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ABSTRACT

We propose a new method for detecting the musical instru-
ments that are present in single-channel mixtures. Such a
task is of interest for audio and multimedia content analysis
and indexing applications. The approach is based on group-
ing sinusoidal trajectories according to common onsets, and
comparing each group’s overall amplitude evolution with a
set of pre-trained probabilistic templates describing the tem-
poral evolution of the spectral envelopes of a given set of in-
struments. Classification is based on either an Euclidean or
a probabilistic definition of timbral similarity, both of which
are compared with respect to detection accuracy.

Index Terms— Musical instrument classification, Music
Information Retrieval, spectral envelope, Gaussian Processes.

1. INTRODUCTION

We present a method for detecting the musical instruments
that are present in monaural (single-channel) linear mixtures.
This is of interest for music content analysis applications such
as indexing and retrieval, transcription and source separation.

Past research work concerning automatic classification of
musical instruments has mostly concentrated on the isolated-
instrument case. In comparison, the more demanding and
realistic polyphonic case has only been addressed recently.
Approaches aiming at that goal typically either consider the
mixture as a whole [1] or attempt to separate the constituent
sources with prior knowledge related to pitch [2].

The proposed method is based on the grouping and sepa-
ration of sinusoidal components, but has the particularity that
no harmonicity is assumed, since classification is solely based
on the amplitude of the partials and their evolution in time.
As a result, no pitch-related a priori information or prelimi-
nary multipitch detection step are needed. Also, it can detect
highly inharmonic instruments. The amplitude of common-
onset sinusoidal trajectories is matched against a set of prob-
abilistic time-frequency (t-f) models of the spectral envelope.

2. DYNAMIC SPECTRAL ENVELOPE MODELING

The used timbre models are based on the spectral envelope
and its evolution in time, which are two of the most important

factors contributing to the characteristic timbre of each musi-
cal instrument. Detailed validation experiments of the models
were reported in [3]. The first step of the training consists in
performing Principal Component Analysis (PCA) on the set
of all training spectral envelopes extracted by means of sinu-
soidal modeling and frequency interpolation, extracted from
a database of isolated notes. We used a subset of the RWC
database [4]. PCA was used as spectral decomposition trans-
form because of its optimal compression capabilities.

For each instrument, a sequence of notes belonging to a
section of the chromatic scale are considered for the train-
ing of each model. To obtain the rectangular data matrix X
needed for PCA, the amplitudes of the training envelopes are
linearly interpolated to a regular frequency grid of K bins.
Then, spectral decomposition via PCA factorizes the data ma-
trix as X = PY, where the columns of the K × K basis
matrix P are the eigenvectors of the covariance matrix of the
data matrix X, and Y are the projected coefficients. After
whitening, the final projection Yρ of reduced dimensionality
D < K is given by

Yρ = Λ−1/2
ρ PT

ρ (X− E{X}), (1)

where Λ = diag(λ1, . . . , λD) and λd are the D largest eigen-
values of the covariance matrix.

In PCA space, the projected coefficients are then grouped
into a set of generic models representing the classes. Here,
for the sake of accuracy, the time variation of the envelope
is modeled as a trajectory rather than using cluster-based ap-
proximations, such as Gaussian Mixture Models (GMM) or
Hidden Markov Models (HMM). For each class, all training
trajectories are collapsed into a single prototype curve.

To that end, the following steps are taken. First, all trajec-
tories are interpolated in time using the underlying time scales
in order to obtain the same number of points. Then, each point
of index r in the resulting prototype curve for instrument i is
considered to be a D-dimensional Gaussian random variable
pir ∼ N(μir,Σir) with empirical mean μir and empirical
covariance matrix Σir. A prototype curve can be thus inter-
preted as a D-dimensional, nonstationary Gaussian Process
(GP) with time-varying means and covariances:

Ci ∼ GP (μi(r),Σi(r)) . (2)
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Fig. 1. Two-dimensional projection of the prototype curves
corresponding to a 5-class database. Squares denote the start-
ing points.

Figure 1 shows a 2-dimensional projection of an example
set of the mean prototype curves corresponding to a training
set of 5 classes: piano, clarinet, oboe, violin and trumpet. The
database consists of all dynamic levels (piano, mezzoforte and
forte) of two or three exemplars of each instrument type, with
normal playing style, covering a range of one octave (C4-B4).

When projected back to the t-f domain, each prototype tra-
jectory will correspond to a prototype envelope consisting of
a mean surface and a variance surface, which will be denoted
by Mi(g, r) and Vi(g, r), respectively, where g = 1, . . . , G
denotes the frequency grid. The reconstructed mean vector is

μ̂ir = PρΛ1/2
ρ μir + E{X} (3)

and, assuming diagonal covariance for simplicity, the corre-
sponding variance vector is

σ̂2
ir = diag

(
PρΛ1/2

ρ Σir(PρΛ1/2
ρ )T

)
, (4)

both of G dimensions, which form the columns of Mi(g, r)
and Vi(g, r), respectively. Analogously as in model space,
a prototype envelope can be interpreted as a Gaussian Pro-
cess, but this time it is unidimensional and parametrized with
means and variances varying in the t-f plane:

Ei ∼ GP
(
μi(t, f), σ2

i (t, f)
)
. (5)

3. ONSET DETECTION AND TRACK GROUPING

For classification, the mixture is first subjected to inharmonic
sinusoidal extraction, yielding a set of sinusoidal tracks with
frame-wise evolution in amplitude and frequency (phase is
discarded). This is followed by a simple onset detection stage,
based on the detection function o(r) =

∑
p∈Nr

1
f̂pr

, where

f̂pr is the estimated frequency of partial p at frame r and Nr

is the set of indices of the partials born at frame r. The peaks
of this function are declared as the onset positions Lon

o for
o = 1, . . . , O (given in frames).

After onset detection, all tracks tt having its first frame
within the interval [Lon

o −Q,Lon
o + Q] for a given onset lo-

cation Lon
o are grouped into the set To, where o is the onset

index. A value of Q = 2 was chosen. A track belonging to
this set can be either non-overlapping (if it corresponds to a
new partial not present in the previous track group To−1) or
overlapping with a partial of the previous track (if its mean
frequency is close, within a narrow margin, to the mean fre-
quency of a partial from To−1). Due to the fact that no har-
monicity is assumed, it cannot be decided from the tempo-
ral information alone if a partial overlaps with a partial be-
longing to a note or chord having the onset within the same
analysis window or not. This is the origin of the current on-
set separability constraint on the mixture, which hinders two
notes of being individually detected it their onsets are syn-
chronous. For each track set To, a reduced set T ′o was created
by eliminating all the overlapping tracks in order to facilitate
the matching with the t-f templates.

4. TIMBRE DETECTION

The timbre detection stage matches each one of the track
groups T ′o with each one of the prototype envelopes, and
selects the instrument corresponding to the highest match.
To that aim, the core problem is to design an appropriate
distance measure between the track groups and the models.
A similar situation was described in our previous work [5],
where the aim was to match partial clusters already separated
by an external and independent separation method. In that
case, an averaged Euclidean distance between the clusters and
the t-f prototypes was used. Here, that basic idea is further
developed and enhanced.

The first measure tested was the total Euclidean distance
between the amplitude of each t-f bin belonging to T ′o and the
surface Mi evaluated at the frequencies of T ′o :

d(T ′o , M̃io) =
∑
t∈T ′

o

Rt∑
r=1

|Atr −Mi(ftr)|, (6)

where Rt is the number of frames in track tt ∈ T ′o and Atr

and ftr are the logarithmic amplitude and frequency, respec-
tively, of the r-th frame of that track. In order to obtain the

evaluation at the frequency support M̃io = Mi(Fo), for each
data point the model frames closest in time to the input frames
are chosen, and the corresponding values for the mean surface
are linearly interpolated from neighboring data points.

A probabilistic reformulation of such a measure allows to
take into account not only the metric distance to the mean
surfaces Mi, but also the spread of their distribution as mod-
eled by Vi. To this end, the distance-minimization problem
was redefined as a likelihood maximization. In particular, as
measure of timbre similarity between T ′o and the instrument
model formed by parameters θi = (Mi,Vi), the following
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likelihood function is used:

L(T ′o |θi) =
∏

t∈T ′
o

Rt∏
r=1

p (Atr|Mi(ftr),Vi(ftr)) , (7)

where p(x) denotes a unidimensional Gaussian distribution.
The evaluation of the variance surface at the frequency sup-

port Ṽio = Vi(Fo) is performed in the same way as before.
A requirement on both formulations in order to be gener-

ally applicable is that they should not be affected by the over-
all gain and by the note length. To that end, a two-dimensional
parameter search is performed, with one parameter control-
ling the amplitude scaling and one controlling the time extent.
Amplitude scaling is introduced by the additive parameter α
and time scaling is performed by jointly, linearly stretching
the partial tracks towards the end of the note. Then, the Eu-
clidean measure becomes the optimization problem

d(T ′o , M̃io) = min
α,N

⎧⎨
⎩

∑
t∈T ′

o

Rt∑
r=1

|AN
tr + α−Mi(fN

tr )|

⎫⎬
⎭ , (8)

and the likelihood-based problem is

L(T ′o |θi) =

max
α,N

⎧⎨
⎩

∏
t∈T ′

o

wt

Rt∏
r=1

p
(
AN

tr + α|Mi(fN
tr ),Vi(fN

tr )
)
⎫⎬
⎭ , (9)

where AN
tr and fN

tr denote the amplitude and frequency val-
ues for a track belonging to a group that has been stretched
so that its last frame is N . The factor wt denotes an optional

track-wise weighting defined by wt = eRt/f̄t , where f̄t is
the mean frequency of the track, such that lower-frequency
and longer tracks have a greater impact on the matching mea-
sure than higher-frequency and shorter tracks. Two different
versions of the timbre likelihood were tested: weighted and
unweighted (for the latter, wt = 1).

Figure 2(a) shows an example of a good match between a
track group belonging to a piano note (solid black lines) and
a segment of the piano prototype envelope. The tracks have
an overall strong similarity in both their frequency-dependent
amplitude distribution and dynamic variation. In contrast,
Fig. 2(b) is an example of a weak match between the same
piano track group and the oboe model. Both spectral shape
and dynamic behaviors differ significantly.

Figure 3(a) shows the optimization surfaces produced by
an example parameter search (α, N) for a piano note, using
the previous 5-instrument database. Figures 3(b) and 3(c)
show representative projection profiles of the surfaces with
fixed stretching and scaling parameters, respectively.

5. EXPERIMENTAL RESULTS

The single-channel mixtures used for the experiments were
generated by linearly mixing samples of isolated notes from
the RWC database [4]. Three different types of mixtures

(a) Good match: piano tracks versus piano model.

(b) Bad match: piano tracks versus oboe model.

Fig. 2. Examples of matches between track groups (solid
black lines) and prototype envelopes.

were generated: simple, consonant mixtures consisting of
one single note per instrument separated by consonant inter-
vals (fifths, fourths, thirds, major and minor sixths), simple,
dissonant mixtures with single notes separated by dissonant
intervals (major and minor seconds, augmented fourths, ma-
jor and minor sevenths), and sequences of more than one
note per instrument, containing both consonant and dissonant
interval relationships. Predominantly dissonant mixtures are
expected to be easier to classify than predominantly conso-
nant ones, because of the higher degree of partial overlaps
of the latter. For each type of mixture and polyphony level,
10 mixtures were generated for the simple-mixture experi-
ments and 20 for the sequence experiments, making a total
of 100 mixtures. The sample onsets were separated at least
by one analysis frame. The training database consists of the
5 instruments mentioned before, covering 2 octaves (C4-B5)
and contains 1098 samples in total. For the evaluation, the
database was partitioned into separate training (66% of the
database) and testing sets (33% of the database).

The classification measure chosen for the experiments
was the note-by-note accuracy, i.e. the percentage of detected
individual notes correctly assigned to their instrument. Table
1 shows the results for all three timbre similarity measures
and all three mixture types. The likelihood approach worked
better than the Euclidean distance in all cases, showing the
advantage of taking into account the model variances. Using
the track-wise length and frequency weighting in the like-
lihood clearly improves performance in the dissonant case.
That is not the case, however, for high, consonant poly-
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(a) Weighted likelihood optimization surfaces.

051015202530
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Scaling parameter ( )

W
ei

gh
te

d 
lik

el
ih

oo
d

 

 

piano
oboe
clarinet
trumpet
violin

(b) Amplitude scaling profile.

5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Stretching parameter (N)

W
ei

gh
te

d 
lik

el
ih

oo
d

 

 

piano
oboe
clarinet
trumpet
violin

(c) Time stretching profile.

Fig. 3. Examples of likelihood optimization results for a piano note.

Consonant, simple Dissonant, simple Sequences
Polyphony 2 3 4 Av. 2 3 4 Av. 2 3 Av.
Euclidean distance 63.14 34.71 40.23 46.03 73.81 69.79 42.33 61.98 64.66 50.64 57.65
Likelihood 66.48 53.57 51.95 57.33 79.81 57.55 56.40 64.59 63.68 56.40 60.04
Weighted likelihood 76.95 43.21 40.50 53.55 79.81 77.79 61.40 73.00 65.16 54.35 59.76

Table 1. Experimental results: instrument detection accuracy (%).

phonies. This can be explained by the fact that, in consonant
intervals, it is very likely that the lowest-frequency partials
of one of the notes are overlapping, and thus ignored for
the matching, cancelling their proportionally more important
contribution to the weighted likelihood as compared to the
unweighted likelihood. In contrast, lowest partials in disso-
nant intervals are in fact very unlikely to overlap, and the
overlapping will more commonly occur in higher frequency
areas. As expected, performance decreases with increasing
polyphony and is better with dissonant than with consonant
mixtures. The best obtained performances were of 79.71%
with 2 voices, 77.79% with 3 voices, and 61.40% for 4 voices.
For the sequences, the likelihood approach again outperforms
the Euclidean distance. The improvement is however less im-
portant, and the difference in accuracy between the weighted
and non-weighted likelihoods is not statistically significant.

6. CONCLUSIONS AND FUTURE WORK

The proposed method for detection of instruments in monau-
ral polyphonic mixtures focuses on the analysis of the ampli-
tude evolution of the partials, matching it with a set of pre-
trained time-frequency templates. The obtained results shows
the viability of such a task without requiring multipitch es-
timation, and the importance of a detailed assessment of the
temporal evolution of the spectral envelope.

Future improvements can include the refinement of the
models by a decomposition of the envelope into attack, sus-
tain and release phases, the evaluation of other measures of
timbre similarity, and the consideration of delayed or rever-
berant mixtures. Another improvement would be to avoid the
onset separability constraint by either timbre matching of in-
dividual sinusoidal tracks or using models of mixed timbres.
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