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ABSTRACT

The use of psychoacoustical masking models for audio coding appli-
cations has been wide spread over the past decades. In such applica-
tions, it is typically assumed that the original input signal serves as
a masker for the distortions that are introduced by the lossy coding
method that is used. Up to now, these masking models are mostly
based on spectral masking. In this paper, we propose a new per-
ceptual model for audio and speech processing algorithms based
on spectro-temporal masking. A sophisticated perceptual model is
simplified, such that the eventual distortion measure can be written
as a frequency-weighted l2-norm. This yields the same computa-
tional complexity as conventional spectral-based methods, but with
the preservation of the temporal fine structure of the clean signal. It
is shown that the new model can successfully avoid pre-echoes and
can correctly predict masking curves for various maskers.

Index Terms— psychoacoustics, audio coding, auditory mask-
ing

1. INTRODUCTION

It is well-known that the properties of the auditory system play an
important role for various audio and speech processing algorithms.
One common example is transparent audio coding where, by reduc-
ing the bit-rate, errors are introduced to a signal such that the dis-
torted signal is perceptually indistinguishable from the original (e.g.
[1, 2]). A typical approach is to shape the quantization error in the
frequency domain, on a frame-by-frame basis, according to the so-
called masking threshold. As long as the error signal is below this
threshold, the original signal will act as a masker on the error signal.

In the MPEG perceptual model this masking threshold is found
by first separating the signal in tonal and noise maskers, after which
for each of these spectral components a spreading function is defined
[1]. Then, by power addition of these spreading functions, a mask-
ing threshold can be obtained. This method is based on the assump-
tion that the detectability of a specific frequency component is only
determined by the auditory filter centered around that particular fre-
quency. Since this is not in line with various results in literature (e.g.
[3]), which suggests that the detectability of a specific frequency
component is also determined by off-frequency auditory filters, van
de Par et al. introduced a perceptual distortion measure based on
spectral integration [4]. This method shows a better correspondence
with data from psychoacoustic listening tests than the MPEG model,
without separating the signal into tonal and noise maskers, and leads
to better coding results for various fixed bit-rates [4]. In addition,
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the distortion measure is expressed as a mathematical norm, which
allows for incorporating perceptual properties in least squares opti-
mization algorithms, e.g. [5].

Both mentioned methods, like many other spectral-masking
models, assume that the introduced error occurs simultaneously with
the clean signal within one frame and do not take any temporal
changes into account. The consequence is that if an error is intro-
duced before an onset of a clean signal in the same frame, both
models will consider the error to be masked, which is not the case.
This leads to pre-echoes, which are unwanted perceptual artifacts
[2]. There are several solutions available to prevent these pre-echoes
(i.e. window switching [2], temporal noise shaping [6]). However,
these methods are heuristic in nature and cannot be used to derive
analytic solutions for, for example, least-squares optimization prob-
lems.

Although there are better perceptual models available which do
take spectral and temporal information into account (e.g. [7]), their
complexity is often too high. The main reason for this complexity is
that a masking threshold for a given error signal can only be found
using adaptive procedures [7]; an analytic expression is not avail-
able. This means that in a coding environment, for each newly intro-
duced quantization level the model must be applied several times to
find an estimation of its masking threshold, which is computationally
highly demanding.

In this paper a new perceptual model is proposed that has the
benefits of a spectro-temporal perceptual model, but has a compu-
tational complexity that is of the same order of magnitude as that
of existing spectral-masking models. In the proposed method, time-
consuming stages (e.g. auditory filter-bank) only have to be applied
once to the clean signal. The perceptual distortion measure can then
be expressed as a frequency-weighted l2-norm.

This paper is organized as follows. First, in Section 2, a gen-
eral approach of the perceptual model will be explained, after which
more mathematical details are given for the eventual distortion mea-
sure. In Section 3 we describe experimental results obtained by
computer simulation and compare the proposed method with a state-
of-the-art spectral-masking method. Finally, in Section 4, we draw
some conclusions.

2. PROPOSED PERCEPTUAL MODEL
Typically, in a spectro-temporal perceptual model, several stages of
the auditory periphery are simulated, resulting in an internal time-
frequency representation of a clean signal, say x, and a distorted
version of the clean signal, say y. By assuming that these internal
representations are degraded by additive internal noise, a signal de-
tection approach can be used to express the discriminability between
the two signals [7], where the internal noise represents the uncer-
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tainty in the detection process. If we specify the internal noise as a
Gaussian i.i.d. stochastic process with zero mean and variance σ2,
and the detection of the difference between the two signals is opti-
mal, the perceptual difference for an auditory filter can be expressed
as

d′i = σ−1

√∑
n

(Ry (i, n)−Rx (i, n))2, (1)

where d′i indicates the ’within-channel’ sensitivity index [8] of the
ith auditory filter and Rx (i, n) and Ry (i, n) represent the internal
representations of the clean and the distorted signal, respectively.
Here, n denotes the time-sample index and i the index of the auditory
filter.

For the proposed method we define the noisy signal as y = x +
εwk, where ε is some additive error signal, windowed by the window
function wk (e.g. Hanning). Here, k refers to the kth frame, which
corresponds to the window start and stop positions located at n =
k and n = k + N − 1, respectively. We make the assumption
that ε is statistically independent of x, and that the window function
has a short support (≈ 5 − 40 ms). In order to include the filter
tails of the internal representation, which may influence the eventual
detectability, ε is zero-padded up to a length of M samples (M ≈
80ms).

We are interested in the level of the error signal such that it is
still masked (i.e.just not detectable) by the clean signal. Motivated
by this, the assumption is made that the energy of the error signal
is smaller than the energy of the clean signal. As an example, εwk

could be the quantization error introduced in a specific frame by an
audio coder and x the original, clean signal. For notational conve-
nience the window and frame index will be excluded and εwk is
simply denoted by ε.

The internal representation for the new method can be obtained
by applying the stages illustrated in Fig. 1. First, to let the model
correctly predict the absolute hearing threshold, an outer-middle ear
filter is applied, where its magnitude response equals the inverse of
the threshold in quiet. Then, a gammatone filter-bank is used to
simulate the basilar membrane. To simplify the notation, the outer-
middle ear filter and the ith gammatone filter are together denoted
by hi. Next, a squared Hilbert envelope1, followed by a smoothing
low-pass filter, say hs, with a cut-off frequency of 500 Hz is applied
to simulate the haircell behavior. This gives the following expression
at the output of the smoothing filter

xi =
∣∣(x ∗ hi)a

∣∣2 ∗ hs. (2)

Then, to introduce an absolute threshold, a constant c is added fol-
lowed by a log-transform. The use of a log-transform instead of a
non-linear gain control, as is done in more sophisticated perceptual
models (e.g. [7]), has the consequence that neural adaptive prop-
erties for fast temporal fluctuations are not taken into account (e.g.
forward masking). However, the model will still be able to predict
the temporal fine structure of the input signal. Hence, sensitivity to
errors introduced just before the onset of a signal is still preserved.
Finally, to reduce the temporal resolution, all samples for a specific
zero-padded frame k are set to its average value. This yields

Rx (i, n) =
1

M

k+M−1∑
m=k

log (xi (m) + c), (3)

1The Hilbert envelope of any arbitrary signal x is defined as the abso-
lute value of its analytic signal xa = x + j.x̃, where x̃ denotes the Hilbert
transform of x.
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Fig. 1. General structure for the internal representation.

for n = k, . . . , k+M−1. Note, that due to the temporal integration,
all samples for frame k are set to the same constant value. By finding
the internal representation of y, in the same manner as in (3), and
by exploiting the linear properties of the Hilbert transform and the
smoothing filter, (1) can be expressed as follows

d′i =
1

σ
√

M

k+M−1∑
m=k

log

(
1 +

εi (m) + vi (m)

xi (m) + c

)
. (4)

Here, εi denotes
∣∣(ε ∗ hi)a

∣∣2 ∗ hs, the hair-cell output when ε is fed
into the system. The signal vi contains various cross-terms between
the clean and error signal and can be expressed as

vi = 2hs ∗
(
(x ∗ hi) (ε ∗ hi) + ˜(x ∗ hi) ˜(ε ∗ hi)

)
, (5)

where (̃.) indicates the Hilbert transform. Next, we ap-
proximate (4) by a first-order Taylor series expansion around
(εi + vi) (xi + c)−1 = 0, which results in

d′i ≈ 1

σ
√

M

k+M−1∑
m=k

εi (m) + vi (m)

xi (m) + c
, (6)

and is a good approximation for small ε. Since we assumed that
ε and x are statistically independent, and we are integrating over a
complete frame, the following term will be close to zero

k+M−1∑
m=k

vi (m)

xi (m) + c
≈ 0. (7)

This suggests that vi can be neglected from (6), without introducing
any significant errors, which yields

d′i ≈ 1

σ
√

M

k+M−1∑
m=k

εi (m)

xi (m) + c
. (8)

Finally, to include the spectral integration property of the auditory
system, the within channel detectabilities for all i are combined by
an additive operation [4]

d ≈
∑

i

d′i ≈ 1

σ
√

M

∑
i

k+M−1∑
m=k

εi (m)

xi (m) + c
. (9)

For some applications the distortion measure as defined in (9)
can still be computational complex. Assume that this measure will
be used in a rate-distortion loop to check whether an introduced
quantization error is perceptible. Although the denominator can be
pre-calculated, the auditory filter-bank and the hair-cell model still
have to be applied for every new introduced error. In order to fur-
ther simplify the model, we generalize the temporal structure of εi,
by assuming that it is equally distributed over the frame. It can be
expected that the energy of the error, within one auditory channel,
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Fig. 2. Normal, and generalized haircell output for a windowed
noise signal. The middle and bottom plots indicate the gammatone
filters with center frequencies 150 Hz, and 2000 Hz, respectively.

will be centralized around the center frequency of the correspond-
ing gammatone filter, say ωc(i). Hence, certain frequency dependent
filter properties (e.g. group delay) are mainly determined by ωc(i).
Motivated by this, we introduce the following generalized haircell
output

εi (n) = zi (n)

⎛⎝k+M−1∑
p=k

zi (p)

⎞⎠−1
k+M−1∑

l=k

εi (l), (10)

where zi denotes the haircell output for wk (n) ejωc(i)n; the win-
dowed complex exponential centered at the center frequency of the
corresponding gammatone filter. Note that zi is normalized in order
to preserve the mean value of the original haircell output. Fig. 2 illus-
trates an example where ε equals a 40 ms Hanning-windowed noise
signal (top plot). The generalized, and the original haircell output
are shown in the middle and bottom plot for the gammatone filters
with center frequencies 150 Hz, and 2000 Hz, respectively. Note,
that the generalized haircell output shows a good approximation for
the rise and fall times for both gammatone filters.

By replacing εi by εi in (9), a new distortion measure D can be
defined as

D =
∑

i

k+M−1∑
l=k

εi (l) gi, (11)

where gi indicates a weighting function, only dependent on i, speci-
fied by

gi =
1

σ
√

M

k+M−1∑
m=k

(
k+M−1∑

l=k

zi (l)

)−1

zi (m)

xi (m) + c
. (12)

Regarding the summation in (11) over l for a specific i, it can be
concluded that its outcome equals the DC-coefficient of εi, weighted
by gi. Since the (normalized) smoothing filter of the hair-cell model
will not affect this outcome, it can be discarded. Hence

D =
∑

i

k+M−1∑
l=k

∣∣(ε ∗ hi)a (l)
∣∣2gi. (13)

Then by applying Parseval’s theorem, the following result can be
obtained

D =

M−1∑
f=0

|ε̂ (f)|2a (f) , (14)

where (̂.) indicates the discrete Fourier transform and a is a weight-
ing function denoted by

a (f) =
4

M

∑
i

gi

∣∣∣ĥi (f)
∣∣∣2 u2 (f). (15)

Here, u (f) represents the unit step function where u (0) = 1
2

, which
origins from the derivation of the analytic signal.

A couple of interesting conclusions can be drawn from (15). The
weighting function a is independent of ε and can be pre-calculated
for each frame, stored and reused. The result is that, in order to eval-
uate (14) for any ε, only one FFT has to be applied followed by a
simple linear weighting. This has the same computational complex-
ity as the spectral integration method used in [4], but now also based
on temporal changes of the clean signal. Another important prop-
erty is that, for the frequency range f = 0, ..., M/2, the weighting
function a is real and positive so that, in fact, the perceptual distor-
tion measure defines a norm for all real input signals, assuming that
εwk �= 0 for all ε �= 0.

In many audio applications a masking curve is used; the masking
threshold for a particular frequency component. Using the proposed
model, we can define a masking curve by computing, for each fre-
quency, the amount of distortion that is just not detectable, e.g., for
which D = 1. By setting |ε̂ (v)|2 = |ε̂ (f)|2 δ (v − f), that is, all
the energy of the distortion is concentrated at one single frequency,
we can define a masking curve mc as follows:

mc (f) =

(
4

M

∑
i

gi

∣∣∣ĥi (f)
∣∣∣2 u2 (f)

)−1

. (16)

3. EXPERIMENTAL RESULTS

To evaluate the new method, a comparison is made with the percep-
tual model developed by van de Par et al. [4]. The degrees of free-
dom for both models are calibrated such that they correctly predict
the threshold in quiet and the 1 dB just noticeable level difference
for a 1 kHz, 70 dB SPL tonal masker (see [4] for more details).

Fig. 3 shows the masking curves for both methods, for a 30
dB/Hz noise masker just before and after the masker onset, indicated
by frame1 and frame2 in the top plot, respectively. The length of the
window equals 200 ms, including 10 ms fade times. The masking
curves, for both frames, are showed in the bottom two plots together
with the threshold in quiet.

Since the pre-masking property of the auditory system only oc-
curs as from 10 ms before the onset of the masker [9], the masking
curve for the first frame should be close to the threshold in quiet,
which is in correspondence with the results predicted by the new
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Fig. 3. Input signal and masking curves for the proposed, and the
van de Par-model, for a 30 dB/Hz noise masker.

method. This is not the case for the van de Par-model, which overes-
timates the masking curve severely. Hence, the new model is signif-
icantly more sensitive to errors introduced before the masker onset
than the van de Par-model. However, both models do agree on the
stationary signal in frame 2, which is in line with data from real lis-
tening tests, as was already shown in [4]. Experiments with tonal
maskers showed the same behavior; the new method successfully
detects the silence before the onset and for stationary frames both
models predict the same masking curve.

To illustrate the properties of the new model, it is included in
a simple overlap-add DFT-based coding scheme and compared with
the van de Par-model. An optimal flexible segmentation algorithm
is used [10], where for each segment certain DFT-coefficients are
set to zero, such that the total distortion of the complete signal is
minimized. A constraint was set on the total amount of preserved
DFT-coefficients. The segmentation algorithm was performed with
possible segment sizes of 5, 10, 20 and 40 ms with a fixed over-
lap of 5 ms. To indicate the difference between the two methods, a
percussive sound example with strong transients is used.

Fig. 4 shows the results (500 ms) for both methods, given the
constraint that on average 20% of the DFT-coefficients is preserved.
For each method, on top of the clean signal, the error signal is plotted
together with the corresponding optimal segmentation. For visual
clarity, the error signal is amplified. For the new method, the top fig-
ure clearly indicates that the segmentation algorithm tries to avoid
encountering transients within one frame. This is due to the sensitiv-
ity to errors introduced before the masker onset, which was already
shown in Fig. 3. In this manner, pre-echoes are avoided, which is
not the case for the segmentation found for the van de Par-model,
where at t = 500 ms clearly a pre-echo can be observed.

Preliminary listening tests indicate that listeners prefer the pro-
posed method for signals with transients, while no perceptual degra-
dation was observed for more stationary signals. Currently, formal
listening tests are performed to test the method extensively.
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Fig. 4. Optimal segmentations for the new method and the van de
Par-Model.

4. CONCLUSIONS
A new perceptual model for audio and speech processing algorithms
is proposed, based on spectro-temporal masking. The eventual dis-
tortion measure is defined as a frequency-weighted l2-norm, which
yields the same complexity as spectral-based models, but with the
preservation of the temporal fine structure of the clean signal. It is
shown that the new model can successfully avoid pre-echoes and can
correctly predict masking curves for various maskers.
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