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ABSTRACT

A novel multimodal approach is proposed to solve the problem of
blind source separation (BSS) of moving sources. The challenge
of BSS for moving sources is that the mixing filters are time vary-
ing, thus the unmixing filters should also be time varying, which are
difficult to track in real time. In the proposed approach, the visual
modality is utilized to facilitate the separation for both stationary and
moving sources. The movement of the sources is detected by a 3-D
tracker based on particle filtering. The full BSS solution is formed
by integrating a frequency domain blind source separation algorithm
and beamforming: if the sources are identified as stationary, a fre-
quency domain BSS algorithm is implemented with an initialization
derived from the visual information. Once the sources are mov-
ing, a beamforming algorithm is used to perform real time speech
enhancement and provide separation of the sources. Experimental
results show that by utilizing the visual modality, the proposed al-
gorithm can not only improve the performance of the BSS algorithm
and mitigate the permutation problem for stationary sources, but also
provide a good BSS performance for moving sources in a low rever-
berant environment.

Index Terms— BSS, multimodal signal processing, particle fil-
tering, 3-D tracking, beamforming, FastICA.

1. INTRODUCTION

Most existing BSS algorithms are based on statistical information
extracted from the received mixed data e.g. [1,2]. However, in many
real applications, the sources may be moving, for example, a presen-
ter may walk around inside a room. In such applications, there will
be insufficient data length available, which limits the application of
these algorithms. Thus BSS methods for moving sources are very
important to solve the cocktail party problem in practice. Only a few
papers have been presented in this area [3,4]. In [3] sources are sepa-
rated by employing frequency domain ICA using a block-wise batch
algorithm in the first stage, and the separated signals are refined by
postprocessing in the second stage which constitutes crosstalk com-
ponent estimation and spectral subtraction. In [4] they used an on-
line PCA algorithm to calculate the whitening matrix and another
online algorithm to calculate the rotation matrix, both algorithms are
designed only for instantaneous source separation, and can not sepa-
rate convolutive mixed signals. Fundamentally, it is very difficult to
separate convolutive mixed signals by utilizing the statistical infor-
mation only extracted from audio signals.
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In this work, a multimodal approach is proposed by utilizing not
only received linearly mixed signals, but also the video information
obtained from video cameras and a key component in the proposed
approach is the tracking of speakers. A video system can capture the
approximate positions and velocities of the speakers, from which we
can identify the directions and motions, i.e., stationary or moving
speakers. If the source is stationary a geometrically based initial-
ization is performed to improve the performance of the frequency
domain BSS algorithm and mitigate the permutation problem. In the
case of moving sources a beamforming method is used to enhance
the signal from one source direction and reduce the energy received
from another source direction, so that source separation can be ob-
tained. Although the beamforming approach can only reduce the
signal from a certain direction and the reverberance of the interfer-
ence still exists, it can obtain a good separation performance in a low
reverberation environment (reverberation time (RT) is 130ms). Per-
forming BSS in rooms with large RT>130ms remains as a research
challenge. Note that the beamforming approach only depends on the
direction of source signals, thus an online real time source separation
can be obtained.

The paper is organized as follows: Section-II presents the sys-
tem model, Section-III describes the source separation by combining
frequency domain BSS and beamforming and experimental results
are provided in Section-IV based on real room recordings. Finally,
in Section-VI we conclude the paper.

2. THE SYSTEM MODEL

The schematic diagram of the system is shown in Figure 1. The
proposed approach can be divided into two stages: human tracking
to obtain position and velocity information and source separation by
utilizing the position and velocity information based on frequency
domain BSS algorithms and beamforming.

The static video cameras are calibrated off line which recov-
ers calibration parameters i.e. the interior orientation, the exterior
orientation and translation vector, the power series coefficients for
distortion, and image scale factor. Video cameras are synchronized
by the external hardware trigger module and frames are captured at
the rate of f, = 25 frames/sec, which means 7, = 1 / 25sec. We
extract the face of each speaker in the images of synchronized video
cameras to find the position of each speaker at each state (time). In
each image frame this is performed on the basis of a skin model
and matching the image with a face model. The position of the lips
of a speaker is determined from the extracted face region in image
coordinates ¢ = [x,y]”. With the help of the above calibration pa-
rameters we calculate the image coordinates of each speaker in 3-D
world coordinates to get the real world position of each speaker z
in R®. The calculated position of the lips z of each speaker is then
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Fig. 1. System block diagram: Face extraction is based on a skin model and template matching with the human face, this 2-D image
information of the video cameras is converted to 3-D world co-ordinates through the calibration parameters. The 3-D estimates are fed to the
visual-tracker, and on the basis of position and velocity information from the tracking, the sources are separated either by beamforming or by

intelligently initializing the FastICA algorithm.

used a measurement in a particle filter based tracker, and the posi-
tion and velocity obtained from the tracker will be used in the source
separation.

2.1. Tracking the Source Position and Velocity

The 3-D visual tacker is based on particle filters (for detail see [5])
and here we will only provide the state and measurement model.

The state and measurement configurations are Xo.x, Zo:x =
{xj,25,7 = 0,...,k}, where xo.,, formulates the state sequence of
the target which we want to obtain, and zo.j, is the observation se-
quence, both in R3. For each iteration, the target state evolves ac-
cording to the following discrete-time stochastic model:

X = fo(Xp—1,k—2, k) + Vi—1 (D

where £, (Xg—1,5—2, k) = 2Xi_1 — Xp—_2 represents a random
walk model for the state x;, and is used for the approach and k is the
discrete index. Process noise vi_1 is white noise, generally non-
Gaussian and caters for under modelling effects and unforseen dis-
turbances in the state model, and its covariance matrix is Q.

The objective of the filter is to estimate recursively state X, from
the measurement z; and the measurement equation is:

zr = hy(xp, k) + 15, (2)

where hy (x5, k) = x;, and ry, is a vector of Gaussian random vari-
ables with covariance matrix (Q,- which caters for the measurement
erTors.

The output of the 3-D visual tracker is position x;, = [z}, 2}, z7]”
and velocity sy, of a speaker at each state k. The distance between
consecutive states is calculated as di, = ||xr — Xk—1||2 and the ve-
locity at state k is calculated as s, = di /T where ||.|| denotes the
Euclidean norm. The change in the position of a speaker with respect
to the previous state plays a critical role in source separation either
by using beamforming or by intelligently initializing the FastICA.

2.2. Source Separation

The audio mixtures from the microphone sensor array are separated
with the help of visual information from the 3-D tracker. On the
basis of velocity information if the sources are stationary for a certain
period (13 = 5Hsec in our simulations) we separate the sources with
intelligently initialized FastICA, otherwise, we separate the sources
by beamforming. The other important parameter to be calculated
before starting the source separation is the angle of arrival of each
speaker to the sensor array. By having the position information of
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the microphones and the speakers at each state from the 3-D visual
tracker we can easily calculate the angle of arrival 8. of speakers
to the microphone sensor array.

In the intelligent office where our recordings are taken the mi-
crophones used are uni-directional. By using a short-time discrete
Fourier transform (DFT) the mixing process can be formulated as
follows: having M statistically independent real sources a multi-
channel FIR filter H(w) producing N observed mixed signals can
be described as (we assume there is no noise or noise can be deemed
as a source signal in the model for simplicity)

u(w) = H(w)s(w) 3)

where H(w) = [hi(w), ..., ha(w)] and the source separation can
be described as
y(w) =W(wu(w) )

where W(w) = [w1(w),..., wn(w)]. In this work to demonstrate
the proposed approach we consider the exactly determined convolu-
tive BSS problem i.e. N = M = 2, without loss of generality. The
unmixing matrix W (w) for each frequency bin is formulated as
W(w) = inv(H(w)™) (5)

where inv(.) is inverse of the matrix and (.)* is Hermitian trans-
pose. The delay vector hy (w) is formulated as

hl(u}) _ [1’”'7ej(N71)dcos(9)w/C]H 6)
where d is the distance between the sensors and c is the speed of
sound in air. Ideally, hq(w) should be the sum of all echo paths,
which are not possible to be tracked, therefore it is approximated by
neglecting the room reverberations.

Finally, by placing W (w) in (4) we estimate the sources. Since
the scaling is not a major issue [6] and there is no permutation prob-
lem, therefore we can align the estimated sources for reconstruction
in the time domain.

If the sources are stationary for time 7} we initialized the Fas-
tICA [7] with the above H(w) similarly to as in [2].

3. EXPERIMENTS AND RESULTS

Data are collected in a 4.6 x 3.5 x 2.5 m? intelligent office. Video
cameras are fully synchronized with external hardware trigger mod-
ule and frames are captured at f, = 25Hz with an image size of
640x480 pixels. Both video cameras have overlapping field of view.
The duration between consecutive states is 7, = 1/25sec. Audio



recordings are taken at f, = 8KHz and are synchronized manu-
ally with video recordings. Distance between the audio-sensors is
d = 4cem. Skin models for the people in recordings were devel-
oped off line. The other important variables are selected as: num-
ber of sensors and speakers N = M = 2, the number of particles
was N, = 600 and results were obtained using 4 runs, the number
of images is k = 525 which indicates 21sec of data, T, = 5sec,
Qv = 10_41, Qr = 10721, FFT length 7" = 2048 and filter length
@ = 1024, and the room impulse duration is RT" = 130ms. In
our proposed algorithm we use non-linearity for FastiICA G(y) =
log(b + y), with b = 0.1. In the experiments speaker 1 is stationary
and speaker 2 is moving around a table in a tele-conference scenario.

3.1. 3-D Tracking and Angle of Arrival Results

In this section we will discuss the results obtained from tracking.
Since speaker 2 is moving around the table (speaker 1 is station-
ary) so we will discuss the tracking results of the speaker 2 in de-
tail. Since we have colour video cameras therefore the face detection
of the speakers is possible by using the skin model as discussed in
Section-2. In Figure 2 the colour blob indicates that the faces are de-
tected well. Since in the dense environment as shown in Figure 2 it
is very hard to detect the lips directly, we approximate the center of
the detected face region as the position of the lips in each sequence.

(b)

Fig. 2. 3-D Tracking results: frames of synchronized recordings, (a)
frames of first camera and (b) frames of second camera; face detec-
tion based on skin model and template matching efficiently detected
the faces in the frames.

The approximate 2-D position of the lips of the speaker in both
synchronized camera frames at each state is converted to 3-D world
coordinates. With this measurement we update the particle filter and
results of the 3-D tracker are shown in Figure 3. The gait of the
speaker is not smooth and the speaker is also stationary for a while at
some points during walking around the table which provides a good
test for the evaluation of 3-D tracker as well as for source septation
methods, and it is also clear in the 3-D tracking results shown in
Figure 3.

In order to view the tracking results in more detail, we plotted
the tracking results in xy axes. Figure 4 clearly shows that the error
in detection and conversion (measurement error) is almost corrected
by the particle filter. Since the speakers and microphones are approx-
imately at the same level therefore in the results of tracking Figure 5
we find that the effective movement of the speaker 2 was in the x and
y-axis therefore the effective change in the angle of arrival was only
in the xy plane. The angle of arrival of speaker 1 is 51.3 degrees
and the angles of arrivals of speaker 2 are shown in Figure 6.
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Fig. 3. 3-D Tracking results: PF based 3-D tracking of the speaker
while walking around the table in the intelligent office.
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Fig. 4. 3-D Tracking results: PF based tracking of the speaker in the
x and y-axis, while walking around the table in the intelligent office.
The result provides more in depth view in the x and y-axis.
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Fig. 5. 3-D Tracking results: PF based tracking of the speaker. The
result provides the information which helps in deciding the method
to separate the sources either by beamforming or by FastICA.

3.2. BSS Results

If the sources are moving we separate the sources by the beamformer
and when the sources are stationary we separate the sources by in-
telligently initializing FastICA (IIFastICA). For the stationary case
recorded mixtures of length of Ssec are separated (for objective eval-
uation we convolved the signals with recorded real room impulse
response, and separation of real room recordings are evaluated sub-
Jectively by listening tests) and results are shown in Figure 7. The
data length of the mixtures used for the beamforming case is 0.4sec
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Fig. 6. Angle of arrival results: Angle of arrival of the speaker 2 to
the sensor array. The estimated angle before tracking and corrected
angle by PF are shown. The change in angle is not smooth because
of the gait of the speaker.

(near to the moving case and for comparison otherwise beamform-
ing is independent of data length) and the results are shown in Fig-
ure 8. The resulting performance indices [2] in the top of Figures
7,8 show good performance i.e. close to zero across the majority of
the frequency bins. We also evaluate permutation on the basis of the
criterion mentioned in [2] i.e. [abs(G11G22) — abs(G12G21)] > 0
mean no permutation, where system matrix G = WH and G;j is
the ijth element. In the bottom of Figures 7,8 the results confirm that
the proposed algorithm automatically mitigates the permutation at
each frequency bin. Since there is no permutation problem therefore
sources are finally aligned in the time domain. The improvement in
signal-to-interference ratio (SIR-Improvement) [6] for IIFastICA is
12.5dB and for beamforming is 9.5d B.
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Fig. 7. BSS Results: performance index at each frequency bin for
proposed IIFastICA algorithm at the top and evaluation of permu-
tation at the bottom. A lower PI refers to a superior method and
[abs(G11G22) — abs(G12G21)] > 0 means no permutation.

Finally, separation of real room recordings were evaluated sub-
jectively by listening tests, six people participated in the listening
tests and mean opinion score is provided in Table 1 (MOS tests for
voice are specified by ITU-T recommendation P.800).

4. CONCLUSIONS

In this paper a new multimodal BSS approach is proposed to solve
the moving source separation problem. Video information is utilized
which provides velocity and direction information of the sources.
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Fig. 8. BSS Results: performance index at each frequency bin for 3-
D tracking based angle of arrival information used in beamforming
at the top and evaluation of permutation at the bottom. A lower PI
refers to a superior method and [abs(G11G22) —abs(G12G21)] > 0
means no permutation.

Table 1. Subjective evaluation: MOS for separation of real room
recordings, by intelligently initialized FastICA (IIFastICA) when
sources are stationary, and by beamforming when sources are mov-
ing.

Algorithms IIFastICA | Beamforming
Mean opinion score 4.7 3.8

The direction information is then utilized to facilitate the beamform-
ing and source separation. As shown by the simulation results, the
proposed approach has a good performance for both stationary and
moving sources, which is not previously possible. This work pro-
vides a substantial step forward towards the solution of the real cock-
tail party problem.
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