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ABSTRACT 

 
This paper introduces an algorithm to separate speech 
streams from a single-channel speech mixture. Most current 
speech segregation algorithms allocate speech regions to 
participating speakers depending on which speaker 
dominates in which spectro-temporal region. The proposed 
method is a different approach to speech segregation, in that 
it separates the participating speaker streams rather than 
decide in the favor of the dominating speaker. The 
algorithm depends on a Lease-Squares fitting approach to 
model the speech mixture as a sum of complex 
exponentials. The algorithm gives results that are better than 
an existent algorithm when tested on the same task. The 
performance on a different database yielded good 
segregation results, even for Target-to-Masker ratios as low 
as -15 dB. The algorithm has immense promise for 
improvement and practical implementation. 
 

Index Terms — speech segregation, speech separation, 
co-channel speech, monaural speech, auditory scene 
analysis, Target-to-Masker Ratio 
 

1. INTRODUCTION 
 
Speech signals are seldom available in pure form for speech 
processing applications, and are often corrupted by acoustic 
interference like background noise, distortion, simultaneous 
speech from another speaker etc. In such scenarios, it 
becomes necessary to first separate the speech from the 
background. In particular, the task of separating overlapping 
speech from multiple speakers, called Speech Segregation, 
is especially challenging since it involves separating signals 
having very similar statistic and acoustic characteristics. 
The segregation problem has attracted immense research 
effort in the past two decades [1], more so for the case when 
the mixture is available only from a single channel and 
multi-channel approaches cannot be used. This single-
channel situation is called the co-channel or monaural 
speech segregation problem. In this paper, we focus on and 
discuss the two-speaker co-channel segregation problem. 

The ideal approach towards segregation should identify 
the perceptually salient features of the participating streams, 
and preserve all those features during segregation. Recent 
methods have achieved this goal to an extent [1]. However, 

they do not completely reconstruct all portions of the 
participating streams. The long-term goal of recovering 
speech streams as close as possible to the original signals is 
yet to be achieved, and remains a bottleneck in speech 
processing applications. In this paper, we promote a new 
philosophy towards segregation, and propose an algorithm 
that performs better than a state-of-the-art algorithm [2].  

 
2. ANALYSIS OF EXISTENT ALGORITHMS 

 
In both model-based (c.f. [3]) and feature-based (c.f. [2]) 
approaches towards segregation, the speech signal is first 
decomposed into a number of channels using a filter-bank 
over all time frames, giving a collection of Time-Frequency 
Units (TFUs). Features are extracted from each TFU for 
analysis. In model-based approaches, each TFU is assigned 
to the speaker whose model has the maximum likelihood of 
generating its feature. In feature-based approaches, the 
features of the TFU are analyzed to identify which of the 
sources the features match better with, and the TFUs are 
accordingly assigned to that source. In both cases, each TFU 
is assigned to one of the two speakers using some decision 
criteria. The signals within the TFUs corresponding to each 
source are then used as-is to reconstruct that source. 

These approaches assume that TFUs contain energy 
from one of the two speakers. This assumption causes 
“leakage errors” and “missed speech” during reconstruction, 
since most TFUs typically carry speech from both speakers. 
This is explained with the aid of Fig. 1, which shows a 
speech utterance from the Cooke database [4] containing 
speech from a male (A) and female (B) speaker. Panel 1 
shows the spectrogram of the mixture. Panel 2 shows the 
spectrogram of speech from A, with the speech-present 
regions highlighted in blue. Panel 3 shows the same 
information for B in red. As can be seen, there exist some 
TFUs where the mixture contains energy from both 
speakers – a violation of the assumption. Panel 4 shows 
TFUs where speaker A has greater energy than (dominates) 
B, and Panel 5 shows TFUs where B dominates A. Current 
algorithms aim at recovering these latter two profiles 
accurately – the so-called Ideal T-F (ITFDOM) maps. 
Following this, TFUs dominated by speaker A are used to 
reconstruct the speech of A, and those dominated by B are 
used to reconstruct the speech of B. The reconstructed 
speech of A will consequently contain leaked speech from B 
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Figure 1: (Panel 1) Spectrogram of mixture speech containing 
speakers A and B (Panel 2) Spectrogram of A, with non-silent 
TFUs in blue (Panel 3) Spectrogram of B, with non-silent TFUs 
in red (Panel 4) Spectrogram of A, with the dominant TFUs in 
blue (Panel 5) Spectrogram of B, with the dominant TFUs in red. 

(Leakage Error) since some TFUs actually contain energy 
from both speakers, and the reconstructed speech of B 
would lack some speech (Missed Speech). This error is not 
due to the inability to recover the ITFDOM masks accurately. 
Rather, it is due to the inability of the ITFDOM masks to 
describe the original signals completely. An implication of 
this fact is that in cases where the Target-to-Masker Ratio is 
less than 0 dB, a significant portion of the target would be 
dominated by the masker and will be irrecoverable. For 
good segregation, it is necessary to distribute the signal 
content among both speakers. We thus aim to estimate all 
non-silent regions of both utterances – the Complete Ideal 
T-F mask (ITFCOM). Indeed, Missing Feature Theory [5] has 
the aim of bridging the gap between the ITFDOM and 
ITFCOM. We estimate the ITFCOM directly using a model that 
recovers both the signals in the mixture. 

 
3. SEGREGATION : A LEAST SQUARES PROBLEM 
 
The algorithm performs segregation by modeling each TFU 
as a combination of complex sinusoids which are harmonics 
of the pitch frequencies of the speakers. Thus, it requires a 
multi-pitch detector [6]. Our algorithm is different from 
previous models using sinusoids [7] that are spectrum-based 
and estimate only the amplitudes of the sinusoids. Such 
algorithms are susceptible to the effects of windowing. Our 
algorithm, on the other hand, directly models the time series 
and thus is not affected by window parameters. It can also 
estimate both the amplitudes & phases of the sinusoids. 

Consider a Fourier Series representation of a stationary 
periodic signal x[n], 
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where i = 1, 2, .., N are the N harmonics of the fundamental 
frequency 0, i is the amplitude of the ith harmonic and can 
be complex, and the + and – represent the i for positive and 
negative frequencies. Then, for a sequence x[n], if we want 
to estimate the unknown amplitudes i

+ & i
-, it can be done 

by using M > 2N different values of x[n]. Substituting n = 1, 
2, …, M in equation (1) and obtaining M equations in the N 
unknown coefficients, we have in vector form 

x = [V+ V–]  = A  (2) 
where  
x = [x[1] x[2] … x[M]]T,   = [ 1

+ 2
+… N

+ 1
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– … N]T,  
V+   = [ v[1]  v[2] …  v[N] ], V–  = (V+)* and  
v[k] = [exp(j 01k)  exp(j 02k)  … exp(j 0Mk)]T 
where the superscript * represents conjugation and T 
represents transpose. If M > 2N, this gives an over-
determined system of equations. The least square error 
solution of (2) is  = APx, where AP = (AHA)-1AH is the 
pseudo-inverse of A. Observe that the matrix V+ (and V–) is 
composed of columns which form a set of basis functions or 
signals. The coefficients can therefore also be found by the 
Gram-Schmidt procedure. Since  is complex, both the 
amplitudes and phases of the complex exponentials are 
estimated. We build on this principle by dividing the input 
into TFUs and assuming that the signal in each TFU is 
stationary (i.e. the coefficients  are the same within a 
TFU). The input mixture signal is passed through an 
analysis filter-bank that decomposes the input into a number 
of channels. Analysis is done on a frame-wise basis with 
overlapping frames, yielding a number of TFUs. For each 
TFU, if the energy is below a threshold, the TFU is labeled 
silent and not analyzed further. For all non-silent TFUs, the 
pitch is used to estimate the two streams as described below. 
 
3.1. Segregation of Voiced-Voiced Speech 
 
For a given TFU, if the pitch of both speakers is non-zero, 
the mixture signal being analyzed is the sum of two (quasi) 
periodic signals, sA[n] and sB[n]. Let the mixture signal be 
xTF[n] and the pitch values be A and B. Then: 

, ,
1

1

[ ] [ ] [ ] ( exp( ) exp( ))

( exp( ) exp( ))

A

B

N

TF A TF B TF i A i A
iN

k B k B
k

x n s n s n j in j in

j kn j kn

 

giving, in vector form:  xTF[n] = vA
T[n]  + vB

T[n]   
where the set of parameters { } = [ 1

+ 2
+… N1

+ 1
–   2

– 
… N1

– ]T corresponds to the voiced component of speaker A 
and the set of parameters { } = [ 1

+ 2
+…  N2

+ 1
–  2

– … 
N2

– ]T corresponds to the voiced component of B. Here, NA 
& NB are the number of harmonics existing between 0 and 
FS/2, where FS is the sampling frequency. By choosing the 
length of a T-F unit as M > 2(NA + NB), { } & { } are 
obtained as the least squares solution to the set of equations:  

x = [VA
+ VA

– VB
+ VB

–][ T  T ]T = V  

110



Having obtained the estimate { ’}, which defines sA[n], and 
{ ’}, which defines sB[n], we can reconstruct both the 
signals sA,TF[n] & sB,TF[n] that composed the mixture as: 
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3.2. Presence of Unvoiced Speech 
 
For a given TFU, if one of the speakers (say B) is unvoiced 
( B = 0) then the observed mixture signal can be modeled as 
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where w[n] represents a noise source. This can expressed in 
vector form for a window length M > 2NA as 

x = [VA
+ VA

–]  + w 
where w is a noise vector. Since it is hard to find a set of 
basis functions for the noise component w, we pursue an 
alternate solution for . Let E be the energy of the signal 
xTF[n]. The energy of sA,TF[n] is equal to EA = || ||2. We 
thus have a constraint that || ||2  E. The LS fitting problem 
now becomes a constrained minimization problem: 
minimize over  : || [VA

+ VA
–]   – x||2 subject to || ||2  E 

This is a convex-cost, convex-constraint minimization 
problem and Second Order Cone Programming (SOCP) 
yields a solution to this problem [8]. Once the estimate of 
the coefficients { } is obtained, the source signal of A is 
reconstructed exactly as above. Since the energy of the 
unvoiced source EB is the difference between E and EA, one 
way of obtaining the unvoiced signal B is to generate a 
White Gaussian Noise of variance EB. This procedure serves 
to generate fricative-like sounds in all regions of unvoiced 
speech, even for frames where the true signal was a stop. 
Reconstructing the actual obstruent in the TFU (i.e., 
fricative, stop etc.) is a subject of future research. Since the 
proposed algorithm depends on a pitch-based model, 
currently the algorithm does not have the provision to deal 
with TFUs where both speakers are unvoiced. Segregation 
of such TFUs is another future goal.  

 
Since we use overlapping frames in our analysis, the 

reconstructed signals from successive TFUs cannot be 
appended to each other. The estimated signals from TFUs 
are added across channels to reconstruct the estimate for 
each frame first. The stream of each speaker is then 
reconstructed across frames using the overlap-add method.  
 

4. EVALUATION 
 

Fig. 2 shows the performance of the algorithm in separating 
speakers from the same mixture as in Fig. 1. Performance in 
recovering both the ITFCOM and ITFDOM masks are shown. 

The Estimated Complete TF mask (ETFCOM) of each 
speaker is obtained by finding all non-silent regions of the 
reconstructed speech. It is seen that most of the speech-
present region has been well captured for both speakers. 
Similarly, for both speakers, the Estimated Dominated TF 
mask (ETFDOM), obtained in a similar way as the ITFDOM but 
from the reconstructed streams, matches the ITFDOM well.  

The algorithm was quantitatively evaluated using two 
different databases. The pitch tracks needed to perform the 
estimation were extracted from the original signals using 
ESPS Wavesurfer. We compare the performance of the 
proposed algorithm with the Hu-Wang (HW) algorithm in 
[2] on the same task. The Cooke database [4] is used, and 
the task is to recover the voiced utterance in the presence of 
3 distinct masker speech signals, n7, n8 and n9. The metric 
of comparison is the Percentage of Energy Loss (PELD) and 
the Percentage of Noise Residue (PNRD), defined as follows: 

DOM DOM

DOM

Total energy of TFUs with {ITF  = 1, ETF  = 0}
Total energy of TFUs with ITF  = 1ELDP  

DOM DOM

DOM

Total energy of TFUs with {ITF  = 0, ETF  = 1}
Total energy of TFUs with ITF  = 1NRDP  

PELD is the relative energy present in the ITFDOM but missing 
from the ETFDOM and PNRD is the relative energy absent in 
ITFDOM but detected as present in ETFDOM. Ideally, both 
these figures must be low. We also present the SNRs of the 
reconstructed target signals, defined as the ratio between the 
energy of the target signal to that of the reconstruction error: 
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Here the SNR is calculated using the entire original signal. 
Finally, as proposed by us, the ITFDOM does not provide 
complete information about the goodness of reconstruction 
and thus we also present the values PELC and PNRC which are 
obtained by substituting the ITFCOM mask for ITFDOM in the 

Figure 2: (Panel 1) Spectrogram of A with Ideal non-silent TFUs 
in blue and Estimated non-silent TFUs in green (Panel 2) 
Spectrogram of B with Ideal non-silent TFUs in red and 
Estimated non-silent TFUs in yellow (Panel 3) Spectrogram of A 
with Ideal dominant TFUs in blue and Estimated dominant TFUs 
in green (Panel 4) Spectrogram of B with Ideal dominant TFUs 
marked in red and Estimated dominant TFUs in yellow.
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equations above. Table 1 gives our results on this database: 
 

 Hu-Wang [6] Proposed Algorithm 
Masker PELD PNRD PELD PNRD PELC PNRC SNR 

n7 2.01 2.25 2.01 1.56 0.06 0.003 10.29 
n8 1.16 0.65 6.44 0.18 0.15 0.001 11.68 
n9 17.8 14.22 3.77 12.83 0.15 0.002 7.00 

Table 1: Results on the Cooke database [4]. All values are 
expressed in percentages, except for the SNR which is expressed in 
dB. Compare : columns 1 & 3; columns 2 & 4. 

The proposed system performs segregation better than 
the Hu-Wang algorithm for almost all masker signals with 
lower values of PELD & PNRD. Also, the PELC & PNRC values 
are very low indicating that most of the speech-present 
regions are well preserved in the reconstruction, and the 
missed regions or falsely identified regions are low-energy 
TFUs. The SNR of the reconstructed signals also confirm 
that the quality of reconstruction by our algorithm is good. 

The algorithm is also evaluated on a larger database 
consisting of synthesized mixtures from the TIMIT 
database. The task is to recover one of the signals in the 
mixture (the target). Three different test sets were 
synthesized – {Male, Male} (MM), {Female, Male} (FM) 
and {Female, Female} (FF). In the FM set, half the mixtures 
had a male target and the other half a female target. 200 
utterances were generated for each set at seven different 
Target-to-Masker ratios (TMRs): -15 dB, -10 dB, -5 dB, 0 
dB, 5 dB, 10 dB, 15dB, giving a total of 21 sets. The 
performance was tested across a wide range of TMRs in 
order to examine how well the theory of shared TFUs is 
supported by our algorithm. If the energy is accurately 
being divided between the two sources, our algorithm 
should perform well even at low TMRs.  

The results are shown in Fig. 4. The Error Loss and 
Noise Residue trends are consistent across gender sets. On 
average, performance is best for the FF population and 
worst for the MM population. This might be attributed to 
the fact that the pitch values of males are closer to each 
other than those of females, making estimation harder. The 
values of PELC & PNRC are significantly lower than that of 
PELD & PELD (compare the scales of the two plots). This is 
due to the “shared” TFU concept, which results in fewer 
units with significant energy being missed or falsely 
detected. The quality of reconstruction can be seen from the 
SNR plot of the recovered signals. Even at low TMRs the 
SNR of the recovered signal is above 0 dB. For all TMRs 

upto 10 dB, the algorithm gives an SNR greater than the 
TMR and yields speech that is more usable than the original 
mixture. This result demonstrates that even at very low 
TMRs, the streams can be pulled apart and good quality 
segregation is indeed possible. Audio samples of the 
mixtures and reconstructed signals can be found at [9]. 

 
5. CONCLUSIONS 

 
We have presented an approach to the speech segregation 
problem which emphasizes analyzing the speech regions in 
a way as to pull apart the participating speakers rather than 
decide in favor of the dominating one. The algorithm gives 
separation results comparable to or better than an existent 
algorithm and shows good performance at very low TMRs. 
Some aspects of our future research will be (1) segregation 
when both speakers are unvoiced, (2) segregation when the 
pitch frequencies of both speakers are very close, (3) 
improving segregation in very low TMR and in the presence 
of noise, (4) extension to more than two speakers. 
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Figure 4: Performance of the algorithm on the TIMIT database. The percentage of energy loss, PEL, and percentage of noise residue, PNR, 
are shown for both the ITFDOM and ITFCOM at different TMRs. The SNR of the reconstructed signal is also shown.  
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