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ABSTRACT

We present a new source-filter based method to separate
two speakers talking simultaneously at equal level mixed
into a single sensor. First, the relation between the spec-
tral whitened mixture and the speakers excitation signals is
analyzed. Therefore, a factorial HMM capturing also time
dependencies is exploited. Then, the estimated excitation
signals are combined with best fitting vocal tract information
taken from a trained dictionary. We report results on the
database of Cooke considering 108 speech mixtures. The
average improvement of 2.9 dB in SIR for all data is lower
but not significantly lower compared to the Gaussian mix-
ture method which relies on known pitch-tracks. Although
the performance is currently moderate we believe in this
approach and its significance towards the development of
speaker independent single sensor speech separation.

Index Terms— Speech Separation, Source-Filter Repre-
sentation, Hidden Markov Model, Vector-Quantization

1. INTRODUCTION

The separation of two sound sources mixed into a single chan-
nel is in general an ill-posed problem, i.e., recovering the ex-
act waveforms of the underlying signals is impossible without
further knowledge about the sources or their interrelationship.
For explicit models, the individual source characteristics are
stored during a training phase. Afterwards the model is used
as prior knowledge about the source without considering the
interfering component. The two most established representa-
tives of explicit models are the factorial-max vector quantiza-
tion in [1] and the factorial-max HMM (FHMM) [2] which
also incorporates time dependencies.
In contrast, implicit models try to mimic the ability of the

human auditory system. Here, the mixture is a scene to be
organized and particular extracted components are merged to
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form output streams of individual sources. Therefore, features
like common on- and off-sets, harmonicity, and amplitude-
and frequency modulations are extracted and considered for
the signal separation [3]. The computational auditory scene
analysis systems in [4] and [5] are the most important repre-
sentatives. Both systems are heavily based on harmonicity as
cue for separation.
Motivated by the factorization of the signal mixture into

distinct parts as implicit models does [3], we propose to fac-
torize the spectrum of the mixture in a fine and a coarse spec-
tral structure. For speech the excitation signal produced by
the vocal folds mainly represents the fine spectral structure,
whereas, the coarse spectral structure can be linked to the
shaping of the vocal tract. Separating the coarse from the fine
structure of the speech mixture results in a spectral whitening
and only the fine structure of the individual speakers remains.
Based on this decomposition, the true fine spectral structure
of the underlying signals can be estimated for given excita-
tion models. To capture time dependencies and hence avoid
permutations among both speakers, HMMs are utilized to in-
clude prior knowledge about the respective excitation signals.
Using the FHMM approach the excitation signals can be esti-
mated from the speech mixture. Having an estimate related to
the excitation signal at hand, the coarse spectral structure can
be estimated similarly to an analysis by synthesis problem in
speech coding [6], where a trained vector-quantizer codebook
models the vocal-tract prior knowledge.
In section 2 the system is presented and models are intro-

duced. Reasons supporting this decomposition are given in
sec. 3. Afterwards, the experimental setup is introduced and
performance measures are defined. Finally, in sec. 5 we draw
some conclusions and point to future aspects.

2. SEPARATION ALGORITHM

We assume a linear instantaneous mixture model of two
speakers:

x[t] = s1[t] + s2[t] + ν[t], t = [1, . . . , T ], (1)

where si[t], with i ∈ {1, 2} is the respective speaker, ν[t] is a
noise signal (e.g., sensor and/or background noise) and T de-
notes time. Moreover, we consider the component sources to
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be combined at equal level. Before model training, the com-
ponent signals are divided in their source and filter related
parts using the linear prediction technique (LPC) [6] as shown
in fig.1. For every speech segment d = [1, . . . , D] source
and filter are related as si[t] = −

∑N

n=1 cn · si[t − n] + ei[t],
whereN specifies the filter order, cn the filter coefficients and
ei[t] denotes the residual or excitation signal. Afterwards, the
excitation signal of each speaker is firstly transformed to the
log-frequency domain log |Ei| and secondly, used to learn an
HMM λHMMi . For convenience, time-domain signals will be
in lower case and frequency domain signals in upper case let-
ters. Furthermore, signals in the log-frequency domain, i.e.,
log |Ei|, will be abbreviated by lEi in future. Additionally,
as shown in fig.1 a vector-quantizer (VQ) Codebook, i.e., k-
means [6] is trained to capture each speakers vocal tract in-
formation. In order to enhance filter stability and increase ro-
bustness against quantization errors the LPC coefficients are
represented by their line spectral frequencies (LSF) [6]. At

Fig. 1. Block diagram of the training stage.

the beginning of the decoder stage, shown in fig. 2, spectral
whitening of the speech mixture x[t] using LPC is performed.
Following, the separation is carried out in two steps. First,
the remaining spectral fine-structure lEx in conjunction with
the trained models λHMMi are utilized as input for the FHMM.
The FHMM decodes the excitation mixture lEx and extracts
the individual excitation signals |Êi|. Given the mixture |X |,
the models λ

VQ
i of each speaker, and the estimated excita-

tion signals, we are able to estimate the best fitting vocal tract
information in the VTE Separation unit. The best fitting en-
velope is extracted from λ

VQ
i for a particular instant of time

in the l2-norm. The provided output |Ŝi| is an estimate of the
underlying signals.

2.1. Source Representation- FHMM

In order to track every speaker over time, i.e., capture
also time dependencies, and hence avoid permutations of
sources an HMM is used to model vocal-fold related in-
formation. The emission distribution contains the vocal-
fold specific attributes whereas the transition matrix cov-
ers temporal constraints. The posterior probability given
the speech mixture and the FHMM in general is given as
p(lE1, lE2|X) ∝ p(lEx|lE1, lE2) · p(lE1) · p(lE2), where
p(lEi) are the independent priors λHMMi and p(lEx|{lEi}) is
the likelihood function defined as:

p(lEx|k1, k2) = N (lEx|max (μlE1

k1
, μlE2

k2
), Σ), (2)

Fig. 2. Block diagram of the separation algorithm.

whereN denotes the normal density,max is the element-wise
maximum operator, ki are the state indices associated with a
particular mean μlEi

ki
, and Σ is the covariance matrix shared

by all speakers. Introducing time-dependency, the best fitting
state for each source is extracted according to:

{k�
1 , k

�
2} = argmax

k1,k2

[
p
(
lEx|k1(d), k2(d)

)

p
(
k1(d)|k1(d − 1), λHMM1

)
p
(
k2(d)|k2(d − 1), λHMM2

)]
,

where d denotes time segments, ki(d) the state index for
a particular instant of time and {k�

i } the most probable state
of source i given the current observation lEx and the respec-
tive transition probability. Finally, the best sequence can be
found using the Viterbi algorithm and the mean μlEi

k�
i
(d) of the

active state is considered to be an estimate for the fine spectral
structure of each speaker.

2.2. Envelope Modeling

Given an estimate of each speakers excitation signal |Êi| we
are now ready to further impose vocal-tract envelope (VTE)
related information on |Êi| given the statistical models, i.e.,
λ
VQ
i , of the VTE and the observed speech mixture. This unit
delivers the unmixed speech signals. We can estimate the
posterior probability similar as above assuming uniform pri-
ors and a spherical covariance. The best state indices can be
found by minimizing the l2-norm as:

{q�
i } = arg min

{qi}

∣∣∣∣ |X | −
∑

i

Ek�
i
· λ

VQ
i (qi)

∣∣∣∣
2
, (3)

where q�
i and qi are codeword indices. In contrast to the

FHMM we do not model any time dependency. The VTE
information related to each codeword q�

i at every time step
can be combined with the estimated excitation signal and the
mixed phase to form the estimated speaker:

ŝi = FT −1{|Êi| · |Ĥi| · exp j � X}, (4)
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where FT −1 denotes the inverse Fourier transform and
|Ĥi| = λ

VQ
i (q�

i ) is the estimated VTE envelope. Finally,
the speech output sequence is built using the overlap-add
method.

3. VALIDATION

In the previous sections all systemmodules as well as their de-
pendencies have been introduced. However, the relationship
between the spectral whitened mixed signal lEx and the indi-
vidual LPC residual signals lEi needs further elaboration. Al-
though there is no closed form solution between these quan-
tities we will explore a reasonable approximation. As defined
in Eq. 1 the two component speech signals are additively re-
lated in the time domain. This additivity still holds in the
Fourier domain assuming that the phase information is in-
cluded. Depicting the signals with their magnitude and phase
values, this relation is given as:

X2 = |S1|
2 + |S2|

2 + 2 · |S1| |S2| cos(φ), (5)

where φ is the phase difference between S1 and S2. Re-
cently, [7] have shown that taking the expected value over
the logarithm of Eq. 5 results in the max-approximation, i.e.,
log |X | = max(log |S1|, log |S2|), assuming a uniformly dis-
tributed phase between [0, . . . , π]. To make it clear, if source
one exhibits more energy in a specific time-frequency bin
compared to source two, the bin is exclusively assigned to the
first source and vice-versa, i.e., the mix-max-approach [7].
The derivation in [7] is independent of any signal characteris-
tics. Hence, it also holds for the excitation signals:

log |Es1,s2
| = max [ log |E1|, log |E2| ], (6)

where Es1,s2
is the Fourier transform of the sum of the

respective vocal fold excitations in the time domain, i.e.,
es1,s2[t] = e1[t] + e2[t]. Thus, the only relation to show
is if |Es1s2

| ≈ |E| is valid. Therefore we provide an ex-
periment where two utterances of the same male speaker
are mixed at equal level corresponding to an SIR of 0 dB.
The mean segmental Source-to-Interference Ratio (SIRseq)
over various speech segments is still over 16 dB, where
the SIRseq is measured in the log-frequency domain. This
is a fairly good value and the approximation can be as-
sumed to be valid. The SIRseq is defined as follows:
SIRseq = 1

D

∑D

d=1 10 log10

P
f
lSi(f,d)2

P
f (lSi(f,d)−l̂Si(f,d))2

, with f the
frequency bin index. Figure 3 shows the original excitation
mixture es1,s2[t], the mixture found by spectral whitening
ex[t], and the error signal defined as the difference between
the two signals. The SIRseq error of 16 dB, results in an SIR
of 8 dB in the time domain shown at the bottom of fig. 3.

4. EXPERIMENTS

The database recently provided by Cooke et al. [8] for the sin-
gle channel speech separation task has been selected to evalu-
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Fig. 3. (a) True excitation mixture es1,s2[t], (b) Spectral
whitened excitation mixture ex[t], (c) Corresponding error.

ate the proposed separation algorithm. We compare this algo-
rithm with the methods in [9] where the excitation signal was
generated given the respective true pitch-track. The sampling
frequency has been resampled to 16 kHz for all files. For cal-
culating the spectrogram the signals have been cut into seg-
ments of 32 ms with time shifts of 16 ms. We have used the
LPC method of order 24 to separate the filter from the source
signal and transformed the filter coefficients to the LSF rep-
resentation.
For training the speaker models, the remaining files not

used for testing are employed, corresponding to approxi-
mately 15 min of speech material for each speaker. Two
randomly selected male and female speakers, each uttering
3 sentences as shown in table 1 were used for testing. For
simplicity we will call these speakers FE1, FE2, MA1 and
MA2 in the remainder of this section.

FE1 speaker 18 “lwixzs” “sbil4a” “prah4s”
FE2 speaker 20 “lwwy2a” “sbil2a” “prbu5p”
MA1 speaker 1 “pbbv6n” “sbwozn” “prwkzp”
MA2 speaker 2 “lwwm2a” “sgai7p” “priv3n”

Table 1. Labels of speakers and file names used for testing.

For testing all files are mixed at a level of 0 dB SIR and
all possible combinations between target speakers and their
interfering speakers are evaluated, resulting in altogether 108
mixed signals. Audio examples of the mixtures and the sepa-
rated files are available at https://www.spsc.tugraz.at/people/
michael-stark/SCSS.
To evaluate the performance the signal-to-interference ra-

tio (SIR) has been used. To avoid synthesis distortions af-
fecting the quality assessment the SIR have been measured
by comparing the magnitude spectrograms of the true source
and the separated signal as:

SIRi =

∑
f,d |Si(f, d)|2

∑
f,d(|Si(f, d)| − |Ŝi(f, d)|)2

,

where f = [1, . . . , F ] is the frequency bin index and Si and
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Ŝi are the source and separated signal spectra of speaker i.
For the VQ codebook a dictionary size of 512 has been

chosen. The dimension of the model parameters corresponds
to the LPC order, i.e., 24. For training we used 200 iter-
ations learning the VQ Codebook and 5 EM-steps for the
FHMM. The FHMM method was trained with 1000 states
using one Gaussian component per state. The priors are as-
sumed to be uniformly distributed. To reduce complexity and
make this method still tractable for estimating the state se-
quence, a beam search [10] restricting the search to the best
5000 candidates has been used. Figures 4 and 5 report the
mean and the standard deviation of the SIR for each target
speaker to its interfering speakers. We compare the perfor-
mance of our method (SF-Sep) to two other approacheswhere
VTE information has been estimated using a Gaussian mix-
ture model (GMM-UBM) and non-negative matrix factoriza-
tion (NMF) [9]. Both methods are based on a known synthetic
excitation signal.
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Fig. 4. Mean and standard deviation of the SIR from target to
interfering speakers. The marker shapes identify methods.
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(a) Target Speaker MA1
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Fig. 5. Mean and standard deviation of the SIR from target to
interfering speakers. The marker shapes identify methods.

Observing the results, in general the methods with the a
priori given pitch-tracks used to synthesize a harmonic sig-
nal as excitation, slightly outperform the proposed algorithm.
This result is not surprising due to the prior knowledge about
the true pitch value for every instant of time. Our proposed
method works totally unsupervised, i.e., without this knowl-
edge. In general, a goodmatch between the true and estimated
vocal-tract envelope can only be found if the excitation esti-
mation works well not only for every time frame but also over
time. In any case, the component signal estimates Ŝi can be
further used to estimate a binary mask which can be applied
on the mixture. The average SIR over all files is shown in

tab. 2. An increase of model complexity of the FHMMmodel
from 1000 to 2000 states might be sufficient to outperform the
GMM-UBM based method.

GMM-UBM NMF SF-Sep
3.2 ± 0.60 dB 6.4 ± 0.70 dB 2.9 ± 1.72 dB

Table 2. Mean and standard deviation of global SIR.

5. CONCLUSION
In this paper, we proposed to tackle the single channel source
separation problem by splitting up the signal into its coarse
and fine spectral structure. We introduced the model re-
lated to each component, namely, a factorial HMM to find a
time continuous vocal-fold excitation related signal for each
speaker. With these estimates at hand a trained VQ has been
employed to further impose matching vocal tract informa-
tion. We validate this approach by showing that the spectral
whitened speech mixture is well approximating the sum of
the component excitation signals. We compared the perfor-
mance to two other methods which search for matching vocal
tracked information but rely on the known pitch-track. At the
current state of development our proposed method delivers a
slightly but not significantly lower performance compared to
the Gaussian mixture approach.
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