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ABSTRACT

We devise a method for sound field reproduction (SFR)

around a solid object in a reverberant room. Until now, work

have focussed on reproducing sound in an empty listening

space and, for the most part, in non-reverberant environments.

However, in a reverberant, room as soon as a listener steps

into the space he alters his acoustic environment, generating

a sound component which is body-scattered and successively

reverberated throughout the room. Building on the model of

the sound field around a solid sphere in free space, we extend

to reproduction around a human head in a reverberant room.

In doing so, we show the relationship between the pressure

matching and mode matching approaches of SFR.

Index Terms- sound field reproduction, reverberation, ar-

ray signal processing, surround sound, ambisonics.

1. INTRODUCTION

A problem relevant to emerging surround sound technology is

the reproduction of a sound field. Using a set of loudspeakers,

it is possible for listeners to fully experience what it is like

to be in the original sound environment. Sound field repro-

duction (SFR) techniques have been developing over the last

30 years, starting from Gerzon’s ambisonics to the recent ap-

proaches of wave field synthesis and higher order ambisonics

[1]. The higher order ambisonics methods [2, 3] use spherical

harmonic-based approaches for sound field reproduction. Re-

cent works extend the approach to the reverberant room [3, 4],

but currently only considers an empty region of space.

In this paper, we present a method for reproducing the

sound field around a human head based upon the approach

of [2, 3, 4] and the sound field around a solid sphere. This

presents a solution towards reproduction around an arbitrary

scattering object in a reverberant room.

2. LEAST SQUARES REPRODUCTION

Consider sound field reproduction (SFR) of a desired field

over a 3-D region of interest using an array of loudspeak-
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Fig. 1. Sound field reproduction in the annulus around a hu-

man head.

ers. At each angular frequency ω, the design task is to

choose loudspeaker filter weights G�(ω) to minimize the

mean square error (MSE) J over the region of interest (ROI)

B,

J =
∫

B

|P (x; ω) − Pd(x; ω)|2dx, (1)

where the sound pressure P (x;ω) in the reproduced

field resulting from the L loudspeakers is P (x;ω) =∑L
�=1 H�(x; ω)G�(ω) and H�(x; ω) is the acoustic transfer

function (ATF) from loudspeaker � to point x inside B (see

Fig. 1). The desired field of reproduction Pd(x; ω) could be a

simple plane wave, the field from a nearby phantom source, a

combination of fields or field measurements from a complex

sound environment.

In the pressure matching approach, one aims to reproduce

the sound field over a volume of space by matching the pres-

sure at a finite number of points within the ROI. Reproducing

a desired pressure field Pd(x;ω) at Q points x1, . . . ,xQ with

L loudspeakers, one should ideally satisfy set of equations:

L∑
�=1

G�(ω)H�(xq; ω) = Pd(xq;ω), q = 1, . . . , Q,

where H�(xq; ω) is the ATF between the loudspeaker � and

an omnidirectional sensor at xq . In matrix form Hg = pd

where [H]q� = H�(xq;ω) is a matrix of ATFs, [g]� = G�(ω)
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is the vector of loudspeaker weights and [pd]q = Pd(xq;ω)
is a vector of the desired pressure at the sample points. This

equation can be solved by minimizing the MSE of the Q sam-

ples:

JQ = ‖Hg − pd‖2, (2)

with robust solution involving regularization as described in

[3]. JQ converges to the MSE J in (1) in the large point limit

provided x1, . . . ,xQ is a dense set of sample points over B.

The least squares method can perform sound field repro-

duction in any acoustic environment. However it is (i) unil-

luminating, not yielding any intuition into choosing design

parameters and (ii) requires knowledge of the ATF from each

loudspeaker to every point inside B.

We present below a spherical harmonic-based approach,

which like that of [2, 3, 4] uses a compact model of the sound

field to (i) improve performance and (ii) reveal a scheme to

adequately sample the ATFs over the reproduction region.

3. MODE MATCHING APPROACH

3.1. Sound Field Model

The sound pressure P (r,φ; ω) in the sound field around a

scattering sphere in free space can be written as in terms of

the sound field coefficients βm
n (ω) [5]:

P (r, φ; ω) =
∞∑

n=0

n∑
m=−n

βm
n [jn(kr) + γnhn(kr)]︸ ︷︷ ︸

bn(kr)

Y m
n (φ)

(3)

where jn(·) and hn(·) are the spherical Bessel and Hankel

functions of the first kind, Y m
n (·) is the spherical harmonic

function, k = ω/c is the wave number and c is the speed of

sound. For a rigid sphere, γn is parameter dependent on the

sphere radius a through γn = −j′n(ka)/h′
n(ka).

For sufficient N , the (N + 1)2 functions {bn(kr)Y n
n (φ) :

n = 0 . . . N, m = −n, . . . , n} encompass all the wave equa-

tion solutions that contribute to the field inside a sphere of

radius R2 [4, 6]. These functions shall referred to as the

modes of B. Truncating the spherical harmonic expansion

of the sound field in (3) to n ≤ N produces:

P (r,φ; ω) =
N∑

n=0

n∑
m=−n

βm
n (ω)bn(kr)Y m

n (φ). (4)

Similarly, the ATF for each loudspeaker to each point inside

B may be written in terms of the coefficients αm
n (�; ω) of the

ATF:

H(r, φ, �; ω) =
N∑

n=0

n∑
m=−n

αm
n (�; ω)bn(kr)Y m

n (φ). (5)

Following [4], we use (4) and (5) as low parameter models of

the sound field and ATF around the scatterer.

This field model may be used to approximate the sound

around a rigid sphere in a reverberant room. It models the

scattered fields of a sound source as well as the scattering

from reverberant reflections (shown in Fig. 2(a)). It does

not describe the sound scattered and successively reverber-

ated throughout the room (Fig. 2(b)) but for a small scatterer,

this component is small.

If the ROI is the volume between two concentric shells of

radii R1 and R2, the SFR problem is straight-forward to solve

due to the radial symmetry.

Theorem 1 (Weighted Mode Matching) For SFR over the
ROI B, the MSE can be expresses

J = (βd − Ag)HW (βd − Ag), (6)

where [βd]n2+n+m+1 � βm
n is the (N + 1)2-vector of coeffi-

cients of the desired sound field, matrix [A](n2+n+m+1)� =
αm

n (�; ω) is the (N + 1)2 × L matrix of ATF coefficients
from L loudspeakers to the ATF modes, g is the L-vector of
loudspeaker weights and the (N + 1)2 square diagonal mode
weighting matrix W has entries

[W ]n2+n+m+1 =
∫ R2

R1

|bn(kr)|2r2dr � wn,

weighting the relative contribution of each mode to the re-
gion of interest. Minimum MSE is given by the unregularized
solution to (6), ĝ = (AHWA)−1AHWβd.

Proof 1 The MSE over the ROI may be written by integrating
the MSE between desired and actual sound fields on a sphere
of radius r over [R1, R2] as J =

∫ R2

R1
M(r)r2dr where

M(r) =
∫

S2
|P (r,φ;ω) − Pd(r, φ; ω)|2dφ,

and the integral is evaluated over all directions S
2 = {φ :

‖φ‖ = 1}.
Evaluating (4) and (5) at Q sampling points x1, . . . ,xQ

all lying at the same radius r, with xq = rφq , the set of
equations may be written in matrix form:

p = Y Bβ, (7a)

H = Y BA, (7b)

where matrices are defined [Y ]q(n2+n+m+1) = Y m
n (φq), di-

agonal matrix [B]n2+n+m+1 = bn(kr) , [β]n2+n+m+1 �
βm

n and [A](n2+n+m+1)� = αm
n (�; ω).

For a Q-point pressure matching over the spherical shell,
the MSE is written:

MQ(r) = [pd(r) − H(r)g]H[pd(r) − H(r)g]

= (βd − Ag)HBH(r)Y HY B(r)(βd − Ag).
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Fig. 2. Image-source method for simulating reverberant field

in a room with a scattering sphere.

where (7) was applied in the second step. For evenly dis-
tributed samples, when Q � (N +1)2 matrix Y HY becomes
equivalent to the orthogonality property of spherical harmon-
ics so that Y HY = I . For dense sampling M(r) = MQ(r).
Integrating then MQ(r) over [R1, R2] yields the MSE J over
the ROI.

The pressure matching approach is equivalent to a weighted

mode matching approach. Rewriting (6) in summation form:

J =
N∑

n=0

n∑
m=−n

wn|βm(d)
n − βm

n |2,

where βm
n =

∑L
�=1 αm

n (�)G�. Each term in the MSE is

weighted by wn, which represents the proportion to the mode

is active inside the reproduction region.

3.2. Loudspeaker ATF Measurement

The matrix of ATFs coefficients A is measured using a spher-

ical array of microphones, following the approach of [6]. For

a spherical array with radius r, since (5) represents a spherical

harmonic series in the coefficients αm
n (�; ω)bn(kr), ATF co-

efficients can be determined from Q pressure samples through

[3]:

αm
n (�; ω) =

1
bn(kr)

Q∑
q=1

H�(r,φq; ω)[Y m
n (φq)]

∗Δq,

with spatial weights Δq and sample points φq determined

from the scheme of [7]. Coefficients may accurately be cal-

culated up to order N ≈ √
Q − 1.

In the empty space case, bn(kr) is the spherical Bessel

functions which at some frequencies becomes zero [4]. ATF

coefficients cannot be determined at all frequencies by sam-

pling at one radius. The rigid sphere has similar degenerate

frequencies as one moves away from the sphere surface.

4. SPHERE IN ROOM SIMULATION

We simulate the sound field in a reverberant room around a

rigid sphere, extending the image-source method using the
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Fig. 3. MSE of sound field reproduction around a scattering

sphere in (a) free space and (b) a reverberant room, show-

ing mode-matching (MM1 and MM2) and pressure matching

(PM1 and PM2) approaches.

reciprocity principle prescribed by [8] which means the mi-

crophone is mirrored instead of the sphere. Accounting for

the several direct, reverberant, scattered and reverberated and
scattered components, to calculate the total sound pressure

we split the sound field into the components:

P (x, ω) =PD(x;ω) + PR(x; ω) + PS(x;ω) + PRS(x; ω)
+ PSR(x;ω) + PRSR(x; ω).

These components are marked in Fig. 2. The direct compo-

nent PD is the signal received at the receiver without reflec-

tion. PR is the nett sum of the reflected images from the walls

which arrive at the receiver, if the sphere were not present.

PS is the component scattered from the original source by

the sphere without undergoing reflection. PRS is the field

scattered by the sphere from reverberant reflections. PSR

is the field scattered by the sphere and arrives at the micro-

phone after any number of reflections. PRSR is the scattered-

reverberated field resulting from the reverberation from the

original sound source. This model neglects multiple inter-

actions between the wall and the sphere, which is assumed

small.

We simulated SFR setup using an array of L = 25 loud-

speakers. The ROI has radii R1 = 10cm and R2 = 30cm
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Fig. 4. Intensity of (a) desired and (b) actual sound fields and (c) the reproduction error in the x-y plane at 1 kHz with 25

loudspeakers, reproducing an in-plane farfield source at φ = π/4. The MSE here is 32%.

and is centered around a rigid sphere about the size of a hu-

man head, with radius a = 8.75cm, at the center of the array.

ATFs are measured using a Q = 121 microphone spherical ar-

ray of radius R2. The sound field was simulated using source

images of up to 4th order reflections and microphone images

up to 2nd order (c.f. Fig. 2), creating a direct-to-reverberant

ratio of −3.2dB. Loudspeaker and microphone arrays were

configured in Fliege geometries [7].

Fig. 3 shows SFR performance around a rigid sphere in

(a) an anechoic room and (b) a reverberant room, compar-

ing both mode matching and pressure matching approaches.

Mode matching using modes of empty space (MM1) is seen

least effective out of all techniques as it has the largest MSE.

MM1 incorrectly applies suboptimal mode weighting to the

acoustic environment. Pressure matching over a single spher-

ical array (PM1) and ideal pressure matching over the volume

(PM2) are shown. Mode matching using rigid sphere modes

(MM2) performs better, close to the ideal case PM2, since

modes are correctly matched to the sound field in the ROI.

Reverberant room reproduction in Fig. 3(b) are shown to

perform approximately as well that an anechoic room in

Fig. 3(a), likely because SR and RSR components are small.

Fig. 4 shows SFR of a farfield source around the scatterer

in an anechoic environment. At 1 kHz using 25 loudspeakers

the MSE is quite large; for exact reproduction over the ROI

about �kR2 + 1�2 = 49 loudspeakers are required.

The PM1 curves show that pressure matching at a sin-

gle radius R2 is inadequate for reproducing a scattered field

at all frequencies. At 600 Hz, the contribution of mode

b0(kr)Y 0
0 (φ), is 66 dB down on modes b1(kr)Y m

1 (φ), and

70 dB down on modes b2(kr)Y m
2 (φ) at r = R2, but modes

b1(kr)Y m
1 (φ) are strongly active at r = R1. MM2 outper-

forms PM1, as the field model causes PM2 to boost weak

modes.

5. CONCLUSION

A model-based approach to sound field reproduction around

a spherical scatterer was presented. Reverberant room sim-

ulations show it outperforms pressure matching by boosting

weak spatial modes. Future work will extend the method to

(i) compensate the scattered-reverberated field and (ii) repro-

duction around arbitrary scatterers.
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