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ABSTRACT

We present a novel theory and design for constructing microphone
arrays to extract spherical harmonic components from soundfields.
The proposed non-spherical array structure provides a flexible and
alternative design to the traditional spherical microphone arrays with
lesser restriction on sensor locations. We use the properties of the
associated Legendre functions and the spherical Bessel functions to
develop a systematic approach to place circular microphone arrays in
three dimensions for hybrid array geometries. As an illustration, we
design and simulate a fifth order spherical harmonic decomposition
array using 70 microphones to operate over a frequency band of an
octave.

Index Terms— Soundfield, microphone arrays, spherical mi-
crophone array, spherical harmonics, hybrid array

1. INTRODUCTION

Decomposition of three dimensional (3D) soundfields into spherical
harmonics is a fundamental problem in acoustic signal processing.
Whilst spherical microphone arrays [1–4] have been shown to be
a natural choice for spherical harmonic decomposition, there are a
number of limitations and constraints, which restrict their useful-
ness. Specifically, the sensor positions of spherical arrays need to
meet a strict orthonormality condition resulting in a limited flexibil-
ity of array geometry. They also suffer from numerical ill condition-
ing at some frequencies. In this paper, we develop systematic theory
to design alternative 3D structures consisting of circular arrays to de-
compose a given acoustic field into spherical harmonic components.

Meyer and Elko [5] proposed a method to use circular arrays
of microphones on the x-y plane together with a centre microphone
at the origin to extract spherical harmonic coefficients. Although,
Meyer’s work gives some flexibility in controlling the vertical spa-
tial response, fundamentally a 2D array on a x-y plane is not able
to determine all of the spherical harmonic coefficients. We have ex-
tended [5] in [6, 7], where a number of circular arrays parallel to
the x-y plane together with microphones on the z-axis are used to
design a higher order (up to 5th) spherical harmonic decomposition
array. In this paper, we show that by adding/ subtracting soundfield
on two circles, which are placed equal distance above and below the
x-y plane, we can eliminate odd / even1 spherical harmonics, respec-
tively. We then exploit this property together with characteristics of
the associated Legendre and the spherical Bessel functions to pro-
vide guidelines to design flexible harmonic extraction arrays.

1Odd and even spherical harmonics are defined as when the sum of order
and degree is odd and even, respectively.

2. SPHERICAL HARMONIC ANALYSIS

2.1. Harmonic Expansion

An arbitrary soundfield at a point (r, θ, φ)within a source free region
can be written as [6]

S(r, θ, φ;k) =
∞∑

n=0

n∑
m=−n

αnm(k)jn(kr)Pn|m|(cos θ)Em(φ)

(1)
where Em(φ) � (1/

√
2π)eimφ, the normalized associated Legen-

dre functions

Pn|m|(cos θ) �

√
2n + 1

2

√
(n − |m|)!
(n + |m|)!Pn|m|(cos θ), (2)

and αnm(k) are the spherical harmonic coefficients of the sound-
field. Using the orthonormality properties of the exponential func-
tions and the normalized associated Legendre functions we can ex-
press

αnm(k)jn(kr) =

∫ 2π

0

∫ π

0

S(r, θ, φ;k)

× Pn|m|(cos θ)E−m(φ) sin θdθdφ. (3)

Knowing the soundfield over angles on a radius r, harmonic coeffi-
cients can be calculated using (3) provided jn(kr) �= 0. The spheri-
cal microphone arrays are designed based on (3).

The representation (1) has an infinite number of terms. However,
this series can be truncated [8] to a finite number N = �ekR/2�
where R is the maximum dimension of the region.

3. SAMPLING SPACE BY CIRCLES

3.1. Circular harmonic decomposition

Let S(rq, θq , φ; k) be the the soundfield on a circle given by (rq, θq).
For the soundfield on this circle, we multiply (1) by E−m(φ) and
integrate with respect to φ over [0, π) to obtain

am(rq, θq; k) =
∞∑

n=|m|

αnm(k)jn(krq)Pn|m|(cos θq) (4)

where

am(rq, θq ; k) �
1

2π

∫ 2π

0

S(rq, θq , φ; k)E−m(φ)dφ. (5)

We termed am(rq, θq; k) as the circular harmonics of a given field
on a circle at (rq, θq).
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3.2. Sampling of circles

To evaluate the integral in (5) with a summation for practical pur-
poses, we use the sampling theorem. For a radius rq, the field is
limited to Nq = �kerq/2� orders due to natural truncation. Hence,
the maximummodem involved isNq . Thus, S(rq, θq, φ; k) is mode
limited toNq, i.e., it contains terms with ejmφ withm = 0, . . . , Nq.
According to Shannon’s sampling theorem, S(rq, θq, φ; k) can be
reconstructed by its samples over [0, 2π] with at least (2Nq + 1)
samples. Hence, we approximate (5) as

am(rq, θq, k) ≈ 2π

Vq

Vq∑
v=1

S(rq, θq, φv; k)E−m(φv), (6)

where Vq ≥ (2Nq + 1) are the number of sampling points on the
circle (rq, θq).

3.3. Spherical harmonics decomposition: Least squares

Suppose our goal is to design a N th order microphone array to es-
timate (N + 1)2 spherical harmonic coefficients. By placing Q ≥
(N + 1) circles of microphones on planes given by (rq, θq), q =
1, . . . , Q, for a specificm, we have

Jmαm = am, form = −N, . . . , N (7)

where αm = [α|m|m, α(|m|+1)m, . . . , αNm]T , Jm =⎡
⎢⎣

j|m|(kr1)P|m||m|(cos θ1) · · · jN (kr1)PN|m|(cos θ1)
...

. . .
...

j|m|(krQ)P|m||m|(cos θQ) · · · jN (krQ)PN|m|(cos θQ)

⎤
⎥⎦ ,

and am = [am(r1, θ1; k), . . . , am(rq, θQ; k)]T . The harmonic co-
efficients αm can be calculated by solving the linear equations (7)
for eachm. If Jm has a valid Moore-Penrose inverse J

+
m, then αm

can be calculated for eachm in the least squares sense as

αm = J
+
mam. (8)

However, if we choose (rq, θq) arbitrary, then there could be a num-
ber of singularities in (12). In our recent work [6, 7], we have given
guidelines on how to avoid singularities. In this paper, we further
advance our theory to give a systematic approach to design non-
spherical arrays to estimate spherical harmonic coefficients.

4. CIRCULAR HARMONIC COMBINATION

Consider two circles placed at (rq, θq) and (rq, π − θq) where 0 ≤
θq ≤ π/2. That is one circle above the x-y plane and the second
circle below the x-y plane but equal distance rq from the origin. The
circular harmonics of the soundfield on the circle on or above the
x-y plane is given by (4) and the the corresponding equation for the
circle below the x-y plane is

am(rq, π − θ0; k) =
∞∑

n=|m|

αnm(k)jn(krq)Pn|m|(cos(π − θq)).

Since cos(π − θ) = − cos θ and Pn|m|(− cos θ) = (−1)n+m

Pn|m|(cos θ), we write

am(rq, π−θq; k) =

∞∑
n=|m|

(−1)n+mαnm(k)jn(kr)Pn|m|(cos θq).

(9)
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Fig. 1: Magnitude of the normalized associate Legendre functions
Pn|m|(cos θ) in dB when n − |m| = 1.

We multiply (9) by (−1)m+�, where � ∈ {0, 1}, and add to (4) to
obtain

b�
m(rq, θq ; k) � (−1)m+�am(π − θq, rq; k) + am(rq, θq; k)

=

∞∑
n=|m|

(1 + (−1)n+�)αnm(k)jn(kr)Pn|m|(cos θq).

(10)

We have following comments on (10):

• Right hand side of (10) is a weighted sum of spherical har-
monic coefficients αnm(k) for a specificm.

• For � = 0, the sum in (10) only consists of weighted sum of
αnm(k) with n is even.

• For � = 1, the sum in (10) only consists of weighted sum of
αnm(k) with n is odd.

• Also note that when θq = π/2, Pn|m|(0) = 0 if n + |m| is
odd, hence the right hand side of (10) is equal to zero when
n + |m| is odd.

• Equation (10) will enable us to separate odd and even2 spheri-
cal harmonics from themeasurement of soundfield on two cir-
cles placed on equal distance above and below the x-y plane.
This is a powerful result, which we use in the next section
to extract spherical harmonics from soundfield measurements
on carefully placed pairs of circles.

5. ARRAY OF CIRCULAR ARRAYS

There are number of different ways to construct an array of micro-
phones consisting of pairs of circles to extract spherical harmonic
coefficients from a 3D soundfield.

5.1. Calculating odd coefficients

In this section, we show how to extract αnm(k) when n + |m|
is odd. Suppose, we have selected Q pairs of (rq, θq) such that

2Here we denote odd and even spherical harmonics, when n+ |m| is odd
and even, respectively.
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PN|m|(cos θq) �= 0 when n + |m| is odd for the required com-
binations of n and m. Now we evaluate (10) for a given m for
q = 1, . . . , Q to write

J
o
mα

o
m = b

o
m, form = −N, . . . , N (11)

where α
o
m = [α(|m|+1)m, α(|m|+3)m, . . . , αNm]T ,

J
o
m = 2

⎡
⎢⎣

d1(|m| + 1, m) d1(|m| + 3, m) . . . d1(N, m)
...

...
...

dQ(|m| + 1, m) dQ(|m| + 3, m) . . . dQ(N, m)

⎤
⎥⎦

(12)
with dq(n, m) = jn(krq)Pn|m|(cos θq), and

b
o
m =

{
[b1

m(r1, θ1; k), . . . , b1
m(rQ, θQ; k)]T ifm is even,

[b0
m(r1, θ1; k), . . . , b0

m(rQ, θQ; k)]T ifm is odd.
(13)

The odd harmonic coefficients α
o
m can be estimated by solving (11)

using the least squares as α
o
m = J

o+
m b

o
m, where J

o+
m is the Moore-

Penrose inverse of J
o
m. This solution exists only if J

o
m is non-

singular. We have following guidelines to choose (rq, θq) system-
atically such that J o

m is always non singular:
• Recently, we have shown [7] that there are specific patterns of
the normalized associated Legendre function when n−|m| =
1, 3, 5, .. as depicted in Figures 1 and 2. There are number of
different range of elevation angles we can choose for θq. Note
that θq could be same for all q or a group of values.

• For aN th order system, there areN(N +1)/2 odd spherical
harmonic coefficients from total of (N +1)2 coefficients. We
use N (forN odd) orN − 1 (forN even) pairs of of circular
microphone arrays. We choose the radii of these circles as

rq =
2

ko

,
4

ko

, . . . ,
N

ko

, for q = 1, . . ., (14)

where ko is a carefully chosen frequency3 within the desired
frequency band (octave), i.e., k ∈ [k�, 2k�].

• With this choice, the soundfield at frequency k on a circle
with rq is order limited to Nq(k) = 2q exp(1)k/ko due to
the properties of Bessel functions. This property limits the
higher order components of the soundfield present at a par-
ticular radius rq. Also, the lower order components are guar-
anteed to be present due to the choice of radii in (14) which
avoids the Bessel zeros.

• Thus, selecting rq according to (14) and θq from Figures 1
and 2, we can guarantee that J o

m is non singular.

5.2. Calculating even coefficients

Suppose, we have selectedQ pairs of (rq, θq) such thatPN|m|(cos θq)
�= 0 when n + |m| is even for the required combinations of n and
m. We evaluate (10) for a givenm for q = 1, . . . , Q to write

J
e
mα

e
m = b

e
m, form = −N, . . . , N (15)

where α
e
m = [α|m|m, α(|m|+2)m, . . . , αNm]T ,

J
e
m = 2

⎡
⎢⎣

d1(|m|, m) d1(|m| + 2, m) . . . d1(N − 1, m)
...

...
...

dQ(|m|, m) dQ(|m| + 2, m) . . . dQ(N − 1, m)

⎤
⎥⎦

3We choose ko such that the array can work over a frequency band of an
octave.
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Fig. 2: Magnitude of the normalized associate Legendre functions
Pn|m|(cos θ) in dB when n − |m| = 3.

with dq(n, m) = jn(krq)Pn|m|(cos θq), and

b
e
m =

{
[b0

m(r1, θ1; k), . . . , b0
m(rQ, θQ; k)]T ifm is even

[b1
m(r1, θ1; k), . . . , b1

m(rQ, θQ; k)]T ifm is odd.
(16)

The even harmonic coefficientsαe
m can be estimated by solving (15)

using the least squares as α
e
m = J

e+
m b

e
m, where J

e+
m is the Moore-

Penrose inverse of J e
m. As for the case of odd harmonics, the solu-

tion exists only if J e
m is non-singular. We have following guidelines

to choose (rq, θq) systematically such that J e
m is always non singu-

lar:

• As in the case of odd coefficients, we can choose range of
values for θq from Fig. 3, which plots PN|m|(cos θ) for n +
|m| even.

• Note that on the x-y plane (θ = π/2), all even associate Leg-
endre functions are non zero. Thus, placing circles on the x-y
plane seems to be an obvious choice to estimate even coeffi-
cients, where we do not need pairs of circles.

• However, we may still choose circles on other planes.
• Depending on our choice, we can design different array con-
figurations, which will be capable of estimating spherical har-
monic coefficients.

• For aN th order system, we placeN/2 (N even) or (N+1)/2
(N odd) circles on the x-y plane. We choose the radii of these
circles as in the case off odd coefficients (see (14)).

5.3. Broadband performance

The spherical harmonic decomposition method proposed in this pa-
per is reliant on constructing matrices J

o
m and J

e
m by appropriately

placing circular arrays. We have chosen θq and rq such that these
matrices are non singular. However, they are dependent on the oper-
ating frequency k and the design parameter ko. It can be shown that
(our simulation support this claim) by choosing ko = k� exp(1)/2
where k� is the lower end of the design band, the array can work
over an octave of [k�, 2k�].
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Fig. 3: Magnitude of the normalized associate Legendre func-
tions Pn|m|(cos θ) in dB when n + |m| is even for (n, |m|) =
(0, 0); (2, 0); (1, 1); (2, 2); (3, 1); (3, 3).

6. SIMULATIONS

To illustrate the new design guidelines, we simulate a 5th order
system. The guideline provides a number of different array con-
figurations. We only show one such configuration here. Accord-
ing to Section 5.1, we first place four circular arrays (two pairs)
with 11, 11, 7 and 7 microphones at (4/ko, π/3), (4/ko, π − π/3),
(5/ko, π/6), and (4/ko, π − π/6). Then we place a pair of mi-
crophones at (5/ko, 0) and (5/ko, π). This sub array consists of
38 microphones are designed to calculate all odd spherical harmon-
ics up to the 5th order (total of 15 coefficients). Most of these mi-
crophone positions could be reused for even coefficients estimation.
However, in this design we place three circular arrays on the x-y
plane together with a single microphone at the origin to complete
the design. We have 7, 11, and 13 microphones in three arrays on
x-y plane at radial distances 2/ko, 4/ko, and 5/ko, respectively. We
use ko = k� exp(1)/2 to enable the array to operate over an oc-
tave of (k�, 2k�). We use a total of 70 sensors for the fifth order
spherical harmonic extraction array. Note that we could reduce the
number of microphones used by reusing some of the circles used for
odd coefficients calculations for even coefficients. Also the operat-
ing bandwidth could be extended by using the concepts of nested
arrays [9].

For simulation, our chosen octave is 3000Hz to 6000Hz (k� =
55.44) and the speed of sound c = 340m/s. W e apply 40dB signal
to noise ratio (SNR) at each sensor, where the noise is additive white
Gaussian (AWGN). We test our design by estimating all 36 spherical
harmonic coefficients αnm(k) for a plane wave sweeping over the
entire 3D space and for all frequencies within the desired octave. We
plot the real and imaginary parts of αnm(k) against the azimuth and
elevation of the sweeping plane wave for lower, mid, and upper end
of the frequency band. From 36 coefficients, we only show α54(k)
in Fig. 4 in this paper. It is evident from Fig. 4 that the array can
operate over an octave with measurement noise level of 40dB.
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