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ABSTRACT

An adaptive second-order differential microphone design is
proposed here that is constructed from a weighted sum of om-
nidirectional microphones. Theoretically, only three micro-
phones are required to form a second-order array. The three
microphone signals are combined to form three unique fixed
second-order beams. Any second-order differential beam-
pattern can be realized using a weighted sum of these three
“building-block” beam outputs. If certain simple constraints
are placed on the weighting of the three fixed beams, the two
null locations that define the final second-order beampattern
can be constrained to defined angular regions.

Index Terms— adaptive microphone beamforming

1. INTRODUCTION

The combination of small compact transducers and sophis-
ticated digital signal processing now offer the possibility of
improving the well-known problem of sound pick-up in noise.
Reverberation can also seriously degrade microphone recep-
tion of speech signals. Over the past decades directional mi-
crophone arrays have proven to be effective in combating both
of these problems.

This paper covers the design and implementation of an
adaptive second-order differential microphone. The differen-
tial realizations presented here are extensions to the first-order
implementation described in previous publications [1,2]. The
adaptive self-optimization is based on minimizing the mi-
crophone output power under the constraints of a) the two
independent nulls for second-order differential microphones
are located in some defined angular region, typically the
rear-half plane and b) sound from the look direction has a
predefined frequency response, ideally a dirac impulse re-
sponse. This constraint is realized by the weighted sum of
time-delayed outputs from three closely-spaced omnidirec-
tional microphones. Although the solution presented here
does not always maximize the signal-to-noise ratio, it can
significantly improve the signal-to-noise ratio in acoustic
fields where only a few dominant noise sources are present.

2. DERIVATION OF THE ADAPTIVE
SECOND-ORDER ARRAY

For a plane-wave signal s(t)with spectrumS(ω) andwavevec-
tor k incident on a three-element array with displacement
vector d shown in Figure 1, the output can be written as,

Y2(ω, θ) = S(ω)
(
1 − e−j(ωT1+k·d)

) (
1 − e−j(ωT2+k·d)

= S(ω)
(
1 − e−jω(T1+(d cos θ)/c)

) (
1 − e−jω(T2+(d cos θ)/c)

)

(1)
where d = |d| is the element spacing for the first-order and
second-order sections. The delay T1 is equal to the delay ap-
plied to one sensor of the first-order sections and T2 is the de-
lay applied to the combination of the two first-order sections.
Figure 1 shows a diagram of a second-ordermicrophone com-
posed of three omnidirectional microphones and three delays
The subscript on the variable Y is used to designate that the
system response is a second-order differential response. The
magnitude of the wavevector k is, |k| = k = ω/c and c is the
speed of sound. Taking the magnitude of Eq. 1 and assuming
kd1 , kd2 � π and, ωT1 , ωT2 � π yields,

|Y2(ω, θ)| ≈ ω2|S(ω) (T1 + (d1 cos θ)/c) (T2 + (d2 cos θ)/c) |
≈ k2|S(ω)[c2T1T2 + c(T1d2 + T2d1) cos θ + d1d2 cos2 θ]| .

(2)
The terms inside the brackets in Eq. 3 contain the array direc-

Fig. 1. Three-element microphone array used to form a
second-order differential array

tional response, composed of a monopole term, a first-order
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dipole term cos θ that resolves the component of the acoustic
particle velocity along the sensor axis, and a linear quadruple
term cos2 θ. One thing to notice in Eq. 3 is that the second-
order array has a second-order differentiator frequency depen-
dence (output increases quadratically with frequency). This
frequency dependence is easily compensated in practice by a
second-order lowpass filter.

An obvious realization of the second-order adaptive dif-
ferential array with variable time delays T1 and T2 is shown
in Figure 1. However, this solution is not attractive as it re-
quires the ability of generating any time delay less than or
equal to di/c. The computational requirements needed to re-
alize the general delay by interpolation filtering and the result-
ing adaptive algorithms are unattractive for a real-time imple-
mentation. Fortunately there is a much simpler way to imple-
ment the adaptive differential array by using an extension of
the back-to-back cardioid configuration described in an ear-
lier paper [2].

Figure 2 shows a schematic implementation of an adap-
tive second-order array differential microphone utilizing only
fixed delays and three omnidirectional microphone elements.
The back-to-back cardioid arrangement for a second-order ar-
ray can be implemented as shown in Figure 2. This topology
can be followed to easily extend the differential array to any
desired order. One simplification utilized here is the assump-
tion that d1 is equal to d2, although this is not necessary to
realize the second-order differential array. This simplifica-
tion does not limit the design but greatly simplifies the design
and analysis. There are other benefits to the implementation
that result by assuming that all di are equal: the major ben-
efit being the need for only one unique delay element. For
digital signal processing, this delay can be most simply real-
ized as one sampling period, but since fractional delays are
relatively easy to implement, this advantage is not really that
significant. Furthermore, by setting the sampling period equal
to d/c the back-to-back cardioid microphone outputs can be
formed directly. Thus, if one chooses the spacing and the
sampling rates appropriately, it is only necessary to store a
few sequential sample values from each microphone signal
to form the desired second-order directional response of the
array. As previously discussed, the lowpass filter shown fol-
lowing the output y(t) in Figure 2 is used to compensate the
second-order ω2differentiator response.

Fig. 2. Schematic implementation of an adaptive second-
order differential array using only fixed delay elements.

3. IMPLEMENTATION OF A SECOND-ORDER
ADAPTIVE ARRAY

Figure 3 shows a basic block diagram of the second-order
adaptive array. Three microphone signals are fed into a fixed
beamformer stage. This first stage forms three base beam-
patterns, which are then fed to the adaptive beamformer.
The three base patterns are the second-order forward car-
dioid (cff ), the second-order backward cardioid (c bb) and
the second-order torus (ctt). The adaptive beamformer oper-
ates on these base-beamformed signals to generate an overall
output for the system.

Fig. 3. Block diagram of second-order adaptive array

3.1. Fixed Beamformer

In Figure 3 one can see the details of the fixed beamformer
which actually consists of three beamformers, one for each
output beam. The fixed beamformers require a delay element
that generates a delay of T1 = τ = d/c , where d is the
microphone spacing and c is the speed of sound. Ideally the
delay is matched to the sampling rate so that the delay time
can be realized with an integer number of samples. Other-
wise an interpolation filter is required. All delays in the fixed
beamformers are identical. Note that the ctt (toroid) output
is amplified by a factor of two. This is done to simplify the
adaptive beamformer notations.
It is instructive to compute the frequency and angular re-
sponses of these three second-order beampatterns. To begin,
let us assume that the microphonesmeasure the acoustic pres-
sure with a flat frequency response so the microphone signals
s1, s2, s3 are within a scale factor, the acoustic pressures
p1, p2, p3. With this assumption, and the assumptions that
the time delays T1 = τ are equal to d/c (the time it takes
sound to propagate between each pair of microphones for
on-axis incidence) and the spacing d is much less than the
acoustic wavelength, the three normalized second-order beam
outputs can be written for the forward second-order cardioid
as,

cff = 1
4 [p1 − 2p2e

−jωτ + p3e
−2jωτ ]

≈ [−e−jωτ (ωτ)2(1 + cos θ)2]/4 (3)

and for the second-order backwards cardioid,

cbb = 1
4 [p1e

−2jωτ − 2p2e
−jωτ + p3

≈ [−e−jωτ (ωτ)2(1− cos θ)2]/4 (4)
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and finally for the second-order toroid,

ctt = −p1e
−jωτ + p2(1 + e−2jωτ )− p3e

−jωτ

≈ −e−jωτ (ωτ)2 sin2 θ
(5)

As can be seen in the above equations, each of the second-
order outputs exhibits the second-order high-pass frequency
response. This second-order high-pass response has implica-
tions to the output signal-to-noise ratio as will be shown in
more detail in a later section. It can also be seen that all the
patterns are phase centered relative to the center of the array
and all of the same phase since the nulls of each pattern are
second-order nulls and therefore there are no phase reversals
in the beampattern. This property of not having phase rever-
sals in the beampattern is important in the overall design and
operation of the adaptive beamformer. It can also be seen that
there is a delay in the output of the arrays equal to the time
delay used in the beamformer.

3.2. Adaptive beamformer

An overview of the adaptive beamformer is plotted in Fig-
ure 4. The adaptive beamformer receives the three base-
beamformed signals and applies a standard normalized LMS
algorithm with the following update equation:

αt+1 = αt +
μce

cT c + δ
(6)

In Equation 6 α is the coefficient vector,

α =
[

α1(t) α2(t)
]T

(7)

c is the signal vector

c =
[

cbb(t) ctt(t)
]T

(8)

and the error signal e is computed according to

e = cff − αT c. (9)

Note that the error signal also serves as the output of the adap-
tive beamformer. δ represents a regularization constant that is
used to control the adaptation update when the denominator
gets small and μ is the step-size.

Note that the adaptive beamformer does not require any
constraints for the look-direction response. This is inherently
included in the forward-cardioid base pattern. In order to limit
the position of the zeros, a constraint on α is necessary. A
simple but effective constraint is −1 ≤ α1,2 ≤ 1. This limits
the zero in the beam-pattern to be out of the frontal angular
region from 0 to 66 degrees.

The frequency response for the look-direction is deter-
mined by the on-axis response of the second-order forward
cardioid which is

H(kd) = 2 (1− cos(2kd)) = 4 sin(kd)2. (10)

Fig. 4. Block diagram of the second-order adaptive beam-
former

 

kd=0.1 kd=1 

Fig. 5. WNG for second-order adaptive array for kd=0.1 (left,
is equivalent to about 100 Hz for d=60 mm) and kd=1 (right,
is equivalent to about 1 kHz for d=60mm). Note the different
scales for the plots (-48 to 4.8dB on the left and -8.5 to 4.8dB
on the right).

In order to achieve a flat frequency response one has to
compensate for this response. In the small kd region this can
be done with a simple second-order lowpass filter. If the fre-
quency range of the system goes beyond kd < 1 it might be-
come necessary to implement a higher order approximation
of Equation 10.

4. WHITE NOISE GAIN (WNG) CHARACTERISTIC

The WNG characteristic or its inverse, the noise sensitivity
[3] describes the noise performance and also the robustness
of the microphone array to perturbations from ideal values.
For a fixed beamformer, the WNG is a function of frequency.
Since we are dealing with an adaptive array with two degrees
of freedom the WNG thus becomes a function in three vari-
ables. In order to visualize this result, the WNG for two fre-
quencies (kd=0.1 and kd=1) is plotted as a surface plot in Fig-
ure 5 covering the allowed range of α1,2 (Equation 6).

The maximum WNG that can be achieved with 3 micro-
phones is 10 log10(3) = 4.8 dB. This is the maximum limit
for both plots in Figure 5. For small kd the maximumWNG is
achieved for α=[-1, -1] which is the omnidirectional pattern.
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Fig. 6. Second-order beampatterns for a few values of α.
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Fig. 7. Adaptive null angles for equal power sources at 0, 90,
150 degrees.

For kd=1 the small kd approximation is no longer valid and
the in-phase addition of the 3 microphone signals is achieved
for weighting different from [-1, -1].

The smallest WNG varies significantly depending on kd.
This can be explained by noting that as long as the low kd ap-
proximation is valid the sensor weightings do not change and
the denominator for the WNG remains constant. On the other
hand, the numerator follows Equation 10. Therefore with ev-
ery doubling of kd the lower bound of the WNG will increase
by 12 dB (or 40dB per decade). This is roughly true for the
results shown in Figure 5. This effect reduces the dynamic
range of the figure and the maximum becomes broader.

5. SIMULATIONS

The LMS algorithm has been implemented as a Matlab simu-
lation. The simulation is performed at at sampling rate of 20
kHz with a microphone spacing of 1.7 cm (this simplified the
implementation since the delay to form the forward/backward
cardioids equals 1 sample). For the following examples the
step-size is set to 0.01. Equal power white noise signals are
generated from different angles. Figure 6 shows some pre-
dicted beampatterns for a few different values of α. Results
for the case of two interfering noise sources at 90 and 150
degrees are shown in Figures 7 and 8.
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Fig. 8. Converged adaptive beampattern for equal power
sources at 0, 90, 150 degrees.

6. CONCLUSIONS

A second-order adaptive differential microphone with two
null angles constrained to a prescribed angular region has
been presented. A simple NMLS adaptation algorithm was
presented. Computer simulations showed that the null loca-
tions can be adapted within a very short period of time.

One direction that may be beneficial is to implement the
adaptive array in frequency subbands. By allowing the nulls
to move independently with frequency the adaptive array
could hypothetically cancel out multiple noise sources that
do not have frequency overlap. Also, in a multipath envi-
ronment it is possible to exploit the spatial filtering of the
adaptive array to reduce the diffuse reverberant field compo-
nent up to 9.5 dB. Finally, if it is desirable to steer the beam to
any direction in a plane, this can be done by building a 2D cir-
cular array [4]. Steering in all directions can be accomplished
by using a spherical array geometry [5].
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