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ABSTRACT

We present a system that detects human falls in the home environ-
ment, distinguishing them from competing noise, by using only the
audio signal from a single far-field microphone. The proposed sys-
tem models each fall or noise segment by means of a Gaussian mix-
ture model (GMM) supervector, whose Euclidean distance measures
the pairwise difference between audio segments. A support vector
machine built on a kernel between GMM supervectors is employed
to classify audio segments into falls and various types of noise. Ex-
periments on a dataset of human falls, collected as part of the Netcar-
ity project, show that the method improves fall classification F-score
to 67% from 59% of a baseline GMM classifier. The approach also
effectively addresses the more difficult fall detection problem, where
audio segment boundaries are unknown. Specifically, we employ it
to reclassify confusable segments produced by a dynamic program-
ming scheme based on traditional GMMs. Such post-processing im-
proves a fall detection accuracy metric by 5% relative.

Index Terms— fall detection, Gaussian mixture model, GMM
supervector, support vector machine

1. INTRODUCTION

Assistance to dependent people, particularly to the elderly living
alone at home, has been attracting increasing attention in today’s
aging societies [1]. Specifically, one public health problem of in-
terest relevant to the elderly is this of falls that often go undetected
and may result in injury [2]. Reliable and speedy detection of such
potentially devastating events by automatic monitoring of the home
is expected to be of benefit to both elderly and caregivers.

Not surprisingly, the research community has started to explore
automatic fall detection based on input from a variety of sensors in
specially equipped smart home environments. Wearable accelerom-
eters, cameras, and microphones have been the most commonly used
such devices, giving rise to a number of initial approaches for detect-
ing falls that range from single-sensory to multi-sensory and multi-
modal algorithms [3]–[6]. In our work, among these sensors, we
are interested in far-field microphones due to their unobtrusiveness,
easy deployment, and in general lower cost and data stream band-
width compared to cameras.

Automatic detection of human falls based on far-field audio is
of course a non-trivial problem: First, falls are inconsistent phenom-
ena; for example, ten fall types are identified in [3]. In addition, the
acoustic signature of falls is affected by human characteristics and
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the impact surface. Furthermore, falls happening in realistic envi-
ronments are easily confusable with daily noise, such as dropping
objects, moving chairs, closing doors, and walking steps, and may
overlap with a large variety of background noise.

Initial efforts to the problem of far-field acoustic fall detection
are reported in [4]–[6]. These however mostly suffer from at least
one of two shortcomings: They in general employ simple classifi-
cation algorithms, thus achieving relatively low performance, or in-
vestigate somewhat simple experimental setups lacking in data vari-
ability with respect to the factors reported above. In this work, we
attempt to address both these issues: On the algorithmic front, mo-
tivated by progress in speaker identification [7], we propose using
a support vector machine (SVM) built on Gaussian mixture model
(GMM) supervectors to distinguish falls from other competing noise.
In our proposed approach, a universal background model learns the
shared acoustic feature space for falls and other noise, and the super-
vectors extracted from the GMMs adapted using each audio segment
serve as robust summary of the acoustic signal. On the experimental
front, we report results on a relatively large database of human falls,
collected as part of the Netcarity Integrated Project [1]. This set con-
tains desirable variability of falls and other noise activity expected in
realistic home environments [6].

The rest of the paper is organized as follows: Section 2 intro-
duces the general framework for fall classification and detection.
Section 3 discusses the GMM supervectors for audio segments. Sec-
tion 4 derives the distance between the GMM supervectors and the
corresponding GMM supervector kernel used in an SVM. Experi-
ments on the Netcarity fall dataset are presented in Section 5, fol-
lowed by a summary in Section 6.

2. PROBLEM OVERVIEW

We are interested in detecting falls acoustically, pinpointing their
temporal occurrence and effectively distinguishing them from other
possible confusable or background noise. For this purpose, we em-
ploy a dynamic programming algorithm that is based on standard
GMMs of falls and of a number of noise types, resulting to a segmen-
tation of the audio input. These segments can then be subsequently
reclassified – as done in this work – by a more complex scheme.
In a simpler version of the above problem, the segments are known
a-priori, in which case the problem reduces to that of classification
alone. The two problems are instances of the general acoustic event
classification and detection paradigm [8, 9].

To better distinguish falls from competing noise, we choose to
model falls and nine classes of noise in the home environment. These
classes, depicted in Table 1, are the result of a labor-intensive anno-
tation effort on the Netcarity fall database (see Section 5.1), taking

69978-1-4244-2354-5/09/$25.00 ©2009 IEEE ICASSP 2009



Table 1. Sound classes for fall classification and detection.

FA sound resulting from the subject falling

ST noise when the subject sits down on the chair, possibly
leading to a bit of chair movement

CL noise of clapping hands

GU noise when the subject gets up from the floor

MP noise of moving, placing, or catching an object

DO noise of dropping an object on the floor

DN noise of opening/closing doors

WK noise of walking steps

MO other noise, including speech and non-speech human
voices, telephone rings and other acoustically salient noise

BG background noise, usually not perceptually salient

three considerations into account: Each noise class should appear a
sufficient number of instants in the training data; should be relatively
distinguishable from the others; and should help in the ultimate goal
of discriminating falls from noise.

Central to this effort is the approach to audio segment modeling.
Each audio segment is first represented by a sequence of feature vec-
tors, extracted from evenly sampled and partially overlapping time-
domain Hamming windows. In particular, in this work, 12 percep-
tual linear predictive (PLP) coefficients of the windowed signal are
extracted (over 25 ms) and are augmented with the overall energy to
give rise to 13-dimensional feature vectors. This process is repeated
every 10 ms, and it is followed by “utterance-level” cepstral mean
subtraction, applied for feature normalization.

Two approaches are then used to model the distribution of these
feature vectors, as schematically depicted in Figs. 1 and 2. The first
follows the traditional GMM paradigm that approximates the joint
distribution of all feature vectors in each event class with a GMM.
For a test audio segment, a maximum likelihood classifier is used
to obtain the hypothesized event class. We propose to use a sec-
ond approach to model audio segments, referred to as the SVM-
GMM-supervector method, approximating the joint distribution of
all feature vectors in each audio segment with a GMM, from which
a GMM supervector is constructed as a summary of the segment.
The pairwise Euclidean distances between these supervectors char-
acterize the difference between the audio segments. Kernels derived
from these distances are used in an SVM for classification.

3. GAUSSIAN MIXTURE MODELS AND GMM
SUPERVECTORS

A GMM approximates the distribution of the observed features with
a Gaussian mixture density function g(z) =

∑K
k=1wk N (z; μk, Σk),

Fig. 1. The GMM approach to fall/noise modeling.

where wk, μk, and Σk denote the weight, mean, and covariance ma-
trix of the kth Gaussian component, and K is the total number of
such components. Covariance matrices Σk are restricted to be diag-
onal for computational efficiency. Maximum likelihood parameters
of a GMM can be obtained by using the well-known expectation-
maximization (EM) algorithm.

3.1. UBM-MAP

Instead of separately estimating parameters for each GMM, we can
also train GMMs by adapting from a “global” GMM, known as the
universal background model (UBM). The potential merits of adapt-
ing GMMs from a UBM are two-fold: First, the parameters may be
robustly estimated with a relatively small amount of training data.
Second, there is correspondence between Gaussian components in
different GMMs when these models are adapted from the same
UBM.

More specifically, we obtain the GMMs by adapting the mean
vectors of the global GMM using the maximum-a-posteriori (MAP)
criterion. The mixture weights and covariance matrices are retained
for simplicity and robustness of parameter estimation. MAP adapta-
tion of GMMs can be implemented by applying the EM algorithm.
In the E-step, we compute Pr(k|zi), namely the posterior probabil-
ity of the unimodal Gaussian component k given observed feature
vector zi, as

Pr(k|zi) =
wk N (zi; μk, Σk)∑K
j=1 wj N (zi; μj , Σj)

, for i = 1, ..., H , (1)

where wk, μk, Σk, k ∈ {1, . . . , K} are the UBM parameters, and
H denotes the total number of observed feature vectors. This step
uses the UBM to assign each feature vector to the unimodal Gaus-
sian components probabilistically. This mechanism establishes cor-
respondence between the components of adapted GMMs, because
the component parameters, i.e., the means, are estimated from statis-
tics obtained involving the same UBM. In the M-step, the mean of
each Gaussian component is updated as

μ̂k =
Nk

Nk + τ
Ek(Z) +

τ

Nk + τ
μk ,

where

Ek(Z) =
1

Nk

H∑
i=1

Pr(k|zi) zi ,

Nk is the occupation likelihood of the observed data on the kth

Gaussian component ( Nk =
∑H

i=1 Pr(k|zi) ), and τ represents the
weight placed on the prior knowledge, i.e., the UBM means, com-
pared to the observed data. In this work, τ is adjusted empirically
according to the amount of available training data.

Fig. 2. SVM-GMM-supervector approach to fall/noise modeling.
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Fig. 3. GMMs (depicted as ovals) summarize audio segments using
multiple unimodal Gaussians (illustrated as circles).

3.2. Summarizing Audio Segments

Feature vectors extracted from an audio segment may carry a lot of
noise. We use a GMM adapted from the UBM to capture the inner
structure of the ensemble of feature vectors in each audio segment,
as shown in Fig. 3. According to (1), the feature vectors are assigned
to different unimodal Gaussian components probabilistically based
on the UBM. We concatenate the adapted means of all the unimodal
Gaussian components as a vector in a high dimensional space de-
fined by the UBM, each dimension roughly corresponding to one
dimension in the mean vector of one particular Gaussian component
in the UBM. This high-dimensional vector, called a GMM supervec-
tor, serves as a summary of the audio segment.

4. GMM SUPERVECTOR SPACE

4.1. Approximating Kullback-Leibler Divergence

As detailed in Section 3.2, we can summarize audio segments with
supervectors constructed from GMMs adapted from the UBM. We
denote two such segment GMMs as ga and gb. A natural similarity
measure between these two GMMs is the Kullback-Leibler diver-
gence,

D(ga||gb) =

∫
z

ga(z) log
ga(z)

gb(z)
dz .

The Kullback-Leibler divergence does not satisfy the conditions for
a metric function, but there exists an upper bound using the log-sum
inequality,

D(ga||gb) ≤
K∑

k=1

wk D(N (z; μa
k, Σk)|| N (z; μb

k, Σk)) ,

where μa
k and μb

k denote the adapted means of the kth component
from the segment GMMs ga and gb , respectively. Since the covari-
ance matrices are shared across all adapted GMMs and the UBM,
the right hand side is equal to

d(a, b)2 =
1

2

K∑
k=1

wk(μa
k − μb

k)T Σ−1
k (μa

k − μb
k) .

We can consider d(a, b) as the Euclidean distance between the
normalized GMM supervectors in a high-dimensional feature space,

d(a, b) = ‖φ(Za) − φ(Zb)‖ 2 , (2)

where

φ(a) = [

√
w1

2
Σ

− 1
2

1 μa
1 ; · · · ;

√
wK

2
Σ

− 1
2

K μa
K ] . (3)

Fig. 4. Snapshot of the labeled Netcarity fall dataset (see also Table
1). Segment boundaries are omitted for simplicity.

4.2. Kernel for SVM

We use the GMM supervectors in an SVM for fall/noise classifica-
tion. Since there are multiple types of noise, we tackle the prob-
lem as multi-class classification, implemented as binary classifica-
tion problems via the one-vs-one method using LibSVM [10]. The
distance defined in (2) can be evaluated using kernel functions, as

d(a, b) =
√

K(a, a) − 2K(a, b) + K(b, b) . (4)

It is straightforward that kernel function K(a, b) = φ(a) • φ(b)
satisfies (4), where φ(a) and φ(b) are defined as in (3).

5. EXPERIMENTS

5.1. The Netcarity Fall Database

Our experiments are carried out on the acoustic fall data collected as
part of European Integrated Project Netcarity [1, 6]. The dataset is
about 7 hours long, consisting of 32 sessions that involve 13 different
actors as subjects that may fall or perform other activities, as well as
additional subjects that produce noise in the background, simulating
relatively well an environment that elderly people may encounter at
home. Fig. 4 provides a snapshot of an acoustic signal from this
database, manually annotated. Note that we map the labels in the
Netcarity dataset to the ten classes detailed in Table 1 as the ground
truth. For our experiments, we split the dataset into 20 training, 7
testing, and 5 held-out sessions, the latter for tuning system param-
eters. Note that the subjects in the training and held-out sessions do
not overlap with the test subjects.

5.2. Experimental Results

Our first experiment aims at the classification of audio segments,
whose boundaries are provided by the manual database annotation.
Both the GMM baseline and the proposed SVM-GMM-supervector
approach are employed for this purpose, implemented using 512
Gaussian components for each GMM. To compare their perfor-
mance, we report results based on two metrics: Classification accu-
racy on all ten classes of Table 1, reflecting the overall performance
of the classifiers, and the F-score of the fall segments, reflecting
the capability to distinguish falls from all other noise. Results of
this experiment are illustrated in Fig. 5. It is clear that both metrics
improve significantly for the proposed approach over the GMM
baseline. In particular, the F-score improves by about 12% relative.

The second experiment focuses on the detection of falls over en-
tire database sessions. To measure performance we use the acoustic
event detection accuracy metric (AED-ACC), defined in [9] as the
harmonic mean between precision and recall. In its calculation, cor-
rectness is defined as the temporal center of either a hypothesized
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Fig. 5. Fall classification results on the Netcarity test dataset.

fall segment or a reference fall segment located within the span of
the other [8, 9]. In our experiment, we further require that all pro-
posed fall segments do not exceed a duration of 5 seconds, so that
the system output can be used for timely response to falls. Any fall
segments that exceed 5 seconds are removed from the output before
scoring. As already mentioned earlier, to perform detection we em-
ploy a dynamic programming algorithm with GMM audio segment
modeling. The output of this process can be further refined by apply-
ing the SVM-GMM-supervector approach to reclassify the resulting
audio segments. Here, we limit this post-processing to segments
with perceptually confusable labels. These are chosen to be falls
(FA), dropping objects (DO), getting up (GU), and walking (WK).
Results of this experiment are illustrated in Fig. 6. It is clear that
the proposed reclassification approach using SVM-GMM supervec-
tors improves performance, resulting in a relative 5% improvement
in the AED-ACC metric.

6. SUMMARY

In this paper, we presented a classification and detection system of
human falls based on input from a single far-field microphone. We
proposed modeling each fall or noise segment using a GMM super-
vector and employing an SVM built on a GMM supervector kernel
to classify audio segments into falls and various types of noise. We
reported experiments on an appropriate dataset, containing falls per-
formed by multiple subjects interspersed with other characteristic
activities and noise expected in realistic home environments. Our ex-
periments demonstrated that the proposed fall/noise modeling boosts
classification performance, compared to a standard event class GMM
classifier. The proposed approach also effectively improved fall de-
tection accuracy, when applied as a post-processing stage to reclas-
sify confusable labels at the output of dynamic programming using
the GMM classifier.

Recent work in speaker verification applications has shown fur-
ther improvement using new classifiers based on GMM supervec-
tors, compared to approaches similar to the SVM-GMM-supervector
method presented in this paper [11]. This suggests the possibility of
further improvements in fall detection based on GMM supervectors.
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Fig. 6. Fall detection results on the Netcarity test dataset.

8. REFERENCES

[1] Netcarity – Ambient Technology to Support Older People at
Home. [Online] http://www.netcarity.org

[2] S. Sadigh, A. Reimers, R. Andersson, and L. Laflamme,
“Falls and fall-related injuries among the elderly: A survey of
residential-care facilities in a Swedish municipality,” J. Com-
munity Health, 29(2): 129–140, 2004.

[3] N. Noury, A. Fleury, P. Rumeau, A.K. Bourke, G.Ó. Laighin,
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