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ABSTRACT

Audio fingerprinting techniques should successfully perform

content-based audio identification even when the audio files

are slightly or seriously distorted. In this paper, we present a

novel audio fingerprinting technique based on combining fin-

gerprint matching results for multiple hash tables in order to

improve the robustness of hashing. Multiple hash tables are

built based on the discrete cosine transform (DCT) which is

applied to the time sequence of energies in each sub-band.

Experimental results show that the recognition errors are sig-

nificantly reduced compared with Philips Robust Hash (PRH)

[1] under various distortions.

Index Terms— Audio Fingerprinting, Content-Based

Audio Identification, Robust Hashing, Discrete Cosine Trans-

form (DCT)

1. INTRODUCTION

An audio fingerprint is a compact content-based digest of an

audio signal. It provides the ability to identify short, unla-

beled audio excerpts and link them to the corresponding meta-

data (e.g. music name, album and artist). An ideal fingerprint-

ing system should be able to recognize audio items regardless

of the various distortions they may suffer from [2]. Also, it

should be able to identify the excerpts only a few seconds

long, and it should be computationally efficient since search-

ing for the best match is performed for a huge database con-

sisting of more than hundreds of millions of fingerprints [2].

Such properties of an audio fingerprinting system give rise

to difficulties in both the fingerprint-extracting and matching

phases, and many practical issues have been studied.

Among the various algorithms, Philips Robust Hash

(PRH) [1] is considered one of the most famous content based

audio identification techniques of which the performance is

mathematically analyzed [3, 4]. With the assumption that

at least one of the sub-fingerprints is invariant to noise, it is

shown that efficient matching in the database is possible via a

robust hashing algorithm. However, although this assumption
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Fig. 1. Fingerprint extraction stage of PRH [6]

makes sense in most mild conditions (e.g. MP3 compression,

down-sampling, equalization), it fails in some noisy envi-

ronments such as playing and recording, resulting in serious

performance degradations.

For such reasons, various improvements have been made

to increase the robustness of PRH. There are several ap-

proaches which viewed extracting sub-fingerprints from the

spectrogram as time-frequency domain 2-D filtering and tried

to improve the robustness of sub-fingerprints by substitut-

ing the filters [5, 6, 7]. However, no one has tried to adopt

multiple hash tables although it is considered to evidently

enhance the robustness. On the other hand, in [8, 9, 10], the

spectrogram was treated as a corrupted 2-D image and image

processing based approaches were used.

In this paper, we propose a novel audio fingerprinting

technique based on combining fingerprint matching results

for multiple hash tables in order to improve the robustness of

audio fingerprinting. Specifically, we apply discrete cosine

transform (DCT) on the time sequence of energies in each

sub-band, and build a hash table for each component of DCT.

Experimental results showed that the proposed approach out-

performed PRH under various environments.

2. SCHEME OF THE PRH ALGORITHM

Before getting into the proposed multiple hashing (MLH)

technique, we will give a brief introduction to the PRH algo-

rithm [1]. PRH consists of two phases: first is the fingerprint

extraction stage, and second is the matching stage.

The overall block diagram for the fingerprint extraction

stage is illustrated in Fig. 1. First, the audio signal is divided
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Fig. 2. Fingerprint matching stage of PRH

into overlapping frames with the length of about 370ms, and

the frame shift is 1/32 of the frame length. Second, FFT is

applied and power spectrum is obtained. Third, the ener-

gies for 33 non-overlapping logarithmically spaced sub-bands

(e.g. Bark Scale) covering the frequency range of 300Hz to

2000Hz are calculated. These sub-band energies are then fil-

tered by a time-frequency filter:

ED(n,m) = E(n,m) − E(n, m + 1)
− (E(n − 1,m) − E(n − 1,m + 1)), (1)

where E(n, m) denotes the m-th sub-band energy of n-th

frame, and ED(n,m) is the output of the filter that repre-

sents the difference between energies from successive frames

and neighboring frequency bands. Finally a 32-bit representa-

tion for each frame (which is referred to as a sub-fingerprint)
is obtained by a thresholding process:

F (n) = [F (n, 0), · · · , F (n, 31)], (2)

F (n, m) =
{

1, ED(n,m) > 0
0, ED(n,m) ≤ 0,

(3)

where F (n) is the sub-fingerprint of frame n and F (n,m) is

the m-th bit of it. The fingerprint consists of 256 consequent

sub-fingerprints, which amounts to about 3 seconds.

The specific positions in the audios in the database which

corresponds to each of the 256 sub-fingerprints are obtained

using a hash table with sub-fingerprints as keys, as depicted

in Fig. 2. Each entry of the hash table stores a list of point-

ers that point to the positions in the audio related to the sub-

fingerprint. For a query audio, 256 sub-fingerprints are ex-

tracted and utilized as keys to the hash table to find the can-

didates which match at least one sub-fingerprint. The candi-

dates are then evaluated through a comparing process: since

we get a block of 256×32 = 8192 bits from the query signal,

we also calculate the fingerprint of 8192 bits from the candi-

date position; the bit error rate (BER) between the two blocks

is computed and compared with a threshold which was set to

0.35 in [1]. If the BER is less than that threshold the two sig-

nals are considered similar and the candidate audio is returned

as the result.

3. DCT BASED MULTIPLE HASHING ALGORITHM

The matching algorithm of PRH relies on the assumption that

there is at least one error-free sub-fingerprint from the query

audio signal. Although the authors of [1] claim that for ‘mild’

degradations the assumption will always hold, that assump-

tion may not work for seriously distorted audio signals, re-

sulting in the significant degradation of the performance.

To enhance the robustness of the audio fingerprinting, we

propose a multiple hashing algorithm. Multiple sets of sub-

fingerprints are extracted using DCT coefficients of the time

sequence of band energies in each band instead of band en-

ergies themselves. The fingerprint extraction stage of MLH

system is illustrated in Fig. 3. The first three parts, i.e. fram-

ing, FFT and band energy calculation are the same as those

in PRH. However, in contrast to PRH, L-point DCT is per-

formed on L consecutive sub-band energies E(n, m), E(n +
1,m), · · · , E(n+L−1,m). Among the output L coefficients,

we only retain the first K values. Since just one frame is

shifted for each DCT, we obtain K coefficients for the frame

n and sub-band m by Ck(n,m), k = 1, 2, · · · ,K. Then, they

are filtered in much the same way as in the PRH:

EDk(n, m) = Ck(n,m) − Ck(n,m + 1)
− (Ck(n − L,m) − Ck(n − L,m + 1)). (4)

Here EDk(n,m) represents the k-th filter output from sub-

band m at frame n. Note that we use Ck(n − L, m) and

Ck(n−L,m+1) instead of Ck(n−1,m) and Ck(n−1,m+
1) to ensure that they are obtained based on band energies

which do not overlap with those used to compute Ck(n, m)
and Ck(n,m+1). In the final stage, the k-th sub-fingerprint at

frame n, Fk(n), is derived through the thresholding process:

Fk(n) = [Fk(n, 0), · · · , Fk(n, 31)], (5)

Fk(n,m) =
{

1, EDk(n,m) > 0
0, EDk(n,m) ≤ 0.

(6)

As a result, K sub-fingerprints are obtained for each frame,

which are used as keys for the K distinct hash tables.
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Fig. 3. Fingerprint extraction stage of MLH
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Fig. 4. Fingerprint matching stage of MLH

The fingerprint matching stage is illustrated in Fig. 4, K
sub-fingerprints are extracted from the query audio for each

frame. The set of the k-th sub-fingerprints for all 256 frames

are represented as fingerprint block k in Fig. 4. For each hash

table, the candidates are selected in the the same way as PRH.

All the candidates chosen in K hash tables are sorted in the

order of number of matches of which the maximum value is

256 times K. BERs from the query block for the candidates

are computed in this order and the first candidate with BER

less than specified threshold is returned.

In the proposed algorithm, DCT is adopted to construct

separate hash tables since DCT has two desired properties.

First, it has a strong energy compaction property [11], which

means that most of the signal information tends to be concen-

trated in a few low-frequency components of DCT; second,

among all the orthogonal transforms, the decorrelation per-

formance of DCT is closest to the Karhunen-Loéve transform

which is optimal in the decorrelation sense [12]. The energy

compaction property together with the slow-varying nature of

sub-band energies guarantees the information’s concentration

in only a few low-frequency coefficients, enabling the reduc-

tion of the number of hash tables. The decorrelation property

Table 1. Recognition rates (%) of PRH and MLH

ensures that the hash tables we build contain distinct informa-

tion with each other so that the combination of the tables may

improve the performances.

4. EXPERIMENTAL RESULTS

There are several parameters that should be determined for the

implementation. The DCT length L was set to be 16, which

considered to provide a good compromise between the fre-

quency and time resolution. As for K, we used K = 4 since

more than 90% of the total energy was found to concentrate

on the first 4 coefficients from the experiment. The threshold

for BER was set to be 0.35 as in [1]. Finally, to speed up

the computation, we applied a running DCT algorithm [13]

to further reduce the computation load since computation of

DCT shifts one sample each time.

To test the performance of MLH, we conducted several

experiments. The database used for constructing hash tables

included 1500 music files with average length of 4 minutes,

extracted from commercial compact discs to guarantee the

high quality. The database consist of 3 groups of 500 files

from classical, pop musics and rock/roll, respectively. To

compare the performance, we also implemented the PRH

algorithm [1]. As the query audios, 1200 music clips with

the length of 256 frames which amounts to about 3 seconds

were chosen from the database. To show the robustness of the

algorithm, the following distortions were applied to construct

the query sets:

Set 1: Playing and recording in a very quiet environment.
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Set 2: Playing and recording in a noisy environment with

recorded office noise played at the same time.

The hash tables used in MLH are denoted as HT1, HT2,

HT3 and HT4, and the only table used in PRH is denoted as

HT0. Here HTk was built from the k-th DCT coefficient; for

example, HT1 was constructed from the DC components. For

each query set, the MLH algorithms using various combina-

tions of hash tables were tested along with PRH. The recogni-

tion rate (in percentage) for each algorithm is given in Table

1. Note that ‘HT’ of HTk is omitted in the table.

As can be inferred from the description on MLH, since

HT1 of MLH was constructed using the DC component, the

performance with HT1 only should be similar to PRH using

HT0, although the low-pass effect of averaging when using

HT1 may enhance the performance under severe noise con-

ditions. When multiple hash tables were used, better results

were achieved since the other hash tables provided additional

information for the music clips. As can be seen from Table

1., the recognition rates from combinations of hash tables are

significantly higher than those using only one of them. It is

worth noting that if more hash tables are used, the memory us-

age and the computational burden increases. Thus it requires

careful consideration how many hash tables are needed ac-

cording to the environment in which the audio fingerprinting

would be used.

5. CONCLUSIONS

In this paper, we present a novel audio fingerprinting tech-

nique based on multiple hash tables. Instead of using only

one hash table as in [1], we rely on combinations of matching

results for several hash tables which are built upon lower fre-

quency DCT coefficients of sub-band energies. Experimental

results have shown that the proposed MLH scheme outper-

formed the conventional PRH algorithm under various con-

ditions. Future works may include the investigation of the

efficient method for which reduced number of hash tables are

used while maintaining the accuracy of MLH.
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