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ABSTRACT 

 
The modeling of music as a language is a core issue for a 
wide range of applications such as polyphonic music 
retrieval, automatic style identification, audio to symbolic 
music transcription and computer-assisted composition. In 
this paper, we focus on the modeling of chord sequences by 
probabilistic N-grams. Previous studies using these models 
have achieved limited success, due to overfitting and to the 
use of a single chord labeling scheme. We investigate these 
issues using model smoothing and selection techniques 
initially designed for spoken language modeling. This 
approach is evaluated over a set of songs by The Beatles, 
considering several chord labeling schemes. Initial results 
show that the accuracy of N-grams is increased but that 
additional improvements may still be achieved in the future 
using more advanced, possibly music-specific, smoothing 
techniques. 
 

Index Terms— Music, probabilistic modeling, N-
grams, model smoothing, model selection.  
 
 

1. INTRODUCTION 
 
Music has several dimensions: melody, harmony, rhythm... 
The harmony dimension consists of a sequence of chords, 
represented by symbols from a finite dictionary. The 
modeling of chord sequences is useful for many tasks, such 
as polyphonic symbolic music retrieval [1, 2], composer 
characterization [3], chord transcription from audio [4] and 
computer-assisted composition or harmonization [5]. 

Considering that chord sequences exhibit strong short-
term dependencies, this problem has often been studied by 
modeling sub-sequences of N successive chords termed N-
grams. Existing approaches include deterministic N-grams 
[1] and probabilistic 2-grams, i.e., Hidden Markov Models 
(HMMs) [4]. Deterministic models offer a computationally 
efficient approach to retrieval applications but cannot model 
the likelihood of any chord sequence, as needed for certain 
other applications. HMMs address this issue, but their low 
model order N=2 does not match the actual complexity of 
music. In this article, we investigate the modeling of chord 

sequences via probabilistic N-gram models with N  2. Such 
models have been used for other types of data, such as 
melody [5] and spoken language [6]. The first attempts to 
model chord sequences via this approach [2, 3, 7] achieved 
limited success, due to fixed model inputs and parameters 
and to overfitting issues. 

In the following, we aim to address these issues by 
applying model smoothing and selection techniques and by 
considering different chord dictionaries. Training strategies 
for probabilistic N-grams are discussed in Section 2. The 
chosen chord labeling schemes and preprocessing steps are 
then presented in Section 3. Initial results are described in 
Section 4. Finally, conclusions are given in Section 5. 
 

2. PROBABILISTIC N-GRAM MODELING 
 
2.1. Model Definition 
 
Consider a song S which consists of a sequence of |S| chords 
labeled C1, C2, …, C|S|. The likelihood of S is defined as 

 (1) 

We assume that each chord Ci depends only on the N-1 
previous chords Ci-N+1, …, Ci-1, called the truncated history 
of Ci. The likelihood of S is therefore modeled as 

 (2) 

where the initial term is the probability of a particular chord 
sequence of length N-1 to occur at the beginning of a song 
and the general term is the conditional probability of a 
particular chord to occur at any other time given each 
possible truncated history. 

In order to compare the likelihood of chord sequences 
of different lengths, the normalized negative log-likelihood, 
also called perplexity [6], is often used instead: 

 (3) 

This quantity is expressed in bits per symbol. The perplexity 
of a set of songs H is then computed as: 

 (4) 
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2.2. Training Issues 
 
Maximum likelihood training aims to estimate the set of 
model probabilities such that  is minimum over some 
training set H (distinct from the test set). This is achieved 
[6] by setting the transition probabilities to 

 (5) 

where c(Ci-N+1,…,Ci) is the number of occurrences of the N-
gram Ci-N+1,…,Ci in the training set. Initial probabilities are 
obtained similarly [6]. 

When the training set is small compared to the number 
of possible N-grams, the test set is likely to contain 
sequences of symbols that were not observed over the 
training set, resulting in infinite perplexity. More generally, 
the existence of sequences with few observations in the 
training set leads to overfitting, i.e., larger perplexity values 
over the test set. In order to achieve better generalization, 
smoothing must be applied to the learnt probabilities, so that 
they may better predict non-observed set of data. 

This issue was acknowledged in [2] and addressed by 
learning a Universal Background Model (UBM) from a 
superset of the training data and interpolating it with the ML 
model. This approach is impractical for some applications 
where additional training data may not be available. Also, 
the UBM itself may suffer from overfitting. 

We have used two smoothing techniques originally 
designed for spoken language modeling: additive smoothing 
and Jelinek-Mercer (JM) smoothing [6]. Additive smoothing 
consists of adding a positive number δΝ to the count of each 
possible sequence of symbols before performing a 
normalization of the counts. This is equivalent to assuming 
that each N-gram occurs δΝ times more than it actually does 
in the training set: 

 

 
(6) 

where D is the considered dictionary of chords symbols and 
|D| the number of symbols in D. 

JM smoothing is more sophisticated as it interpolates 
higher-order N-gram models from lower-order N-gram 
models. Indeed, when there is insufficient data to estimate a 
probability in the higher-order model, the lower-order model 
can often provide useful information. The interpolation is 
done recursively as follows: 

 

 

 

(7) 

where λΝ−1 is a real-valued number between 0 and 1. The 
recursion starts with the smoothed 0th-order model, which is 
assumed to be the uniform distribution. 

The best model can be estimated by testing all possible 
combinations of smoothing techniques, parameter values δΝ 

and λ0,…, λN-1 and model orders N and selecting the one 
leading to minimum perplexity over the test set. 

 
3. CHORD LABELING SCHEMES 

 
There are several chord labeling schemes in music, and the 
choice of one instead of another depends mainly on the 
music style studied [8]. Perplexity values are influenced by 
two main factors: the number of different symbols in the 
dataset and their meaningfulness. The labeling scheme has 
strong influence on both of these characteristics. Hence we 
consider six different schemes in the following. 

 
3.1. Tonality-dependent schemes 
 
Harte [8] has proposed a grammar for chord labeling, which 
he claims to be simple and intuitive for musically trained 
individuals to write and understand. Chord symbols are 
defined by a list of properties: root, type and inversion. The 
root is the name of the note upon which the chord is built. 
All possible note names are accepted, including enharmonic 
names, e.g. D# and Eb. The type property lists the pitch 
intervals making up the chord relative to the root. It 
typically consists of one of 17 common shorthand types, 
plus possible dissonant intervals. If no dissonances are made 
explicit, the chord contains only the notes defined by its 
shorthand type. The inversion property is the pitch interval 
between the root and the bass note. If no bass information is 
provided, the root is assumed to be the bass note, as usual in 
musical notation. For example, the symbol G:maj7(#9)/3 
denotes a G major seventh chord with augmented ninth, i.e. 
the following set of notes: {G, B, D, F#, A#}, with B as the 
bass. The symbol G:min denotes a G minor triad, i.e., {G, 
Bb, D}, with G as the bass. In the following, we consider 
Harte’s original grammar, except that we consider 
enharmonic roots to be equivalent, resulting in a set of 12 
possible roots. Although the number of possible chord 
symbols is on the order of several million, 392 symbols 
were observed in the data of Section 4. 

Most of the current approaches for chord-related tasks 
assume a set of 24 chords instead, consisting of major and 
minor chords from 12 possible non-enharmonic roots [2, 4]. 
Usually, as the minor/major labeling is oversimplified for 
practical applications, the chords which are not exactly pure 
minor or major are transformed. Dissonances and bass 
information are discarded and the roots are respelled so as to 
remove enharmonics. Augmented or diminished/half-
diminished chords are transformed into major and minor 
chords respectively. 

In addition to the above two previously studied chord 
labeling schemes, we consider an intermediate scheme. It 
consists of representing a chord by its root and type, chosen 
among 12 non-enharmonic roots and the 17 shorthand types 
defined by Harte [8], but discarding dissonances and bass 
information which are musically less important. This leads 
to 204 different symbols. This scheme can model musical 
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information in a more realistic way than just considering 
major and minor chords, with a much smaller number of 
symbols than Harte’s original labeling scheme. 

 
3.2. Tonality-independent schemes 
 
For each of the above three labeling schemes, we also 
propose a transformation function, which takes the labels 
and the song initial tonality as inputs and derives tonality-
independent labels. The new labels consist of the exact same 
properties except for the root, which is replaced by one of 
12 tonality-independent roots, representing its relation to the 
initial tonality. For example, the label Emin7(b9) in a song 
with initial tonality D major and the label Amin7(b9) in a 
song with initial tonality G major will both be transformed 
into IImin7(b9). These labels provide better modeling of 
equivalent chord sequences and tonality modulations in 
different songs, even if they are in different initial tonalities. 
This contributes to a better generalization ability of the 
model, since a given chord sequence observed in a particular 
tonality contributes to the estimation of equivalent chord 
sequences transposed in different tonalities. The number of 
possible tonality-independent chord symbols derived from 
Harte’s scheme is again on the order of several million, 
among which 349 were observed in the data of Section 4. 
 

4. EXPERIMENTS 
 
4.1. Dataset 
 
The chosen dataset involves 14194 chord occurrences stem-
ming from the 180 songs making up the 13 studio albums of 
The Beatles, labeled by Harte using the grammar in [8]. This 
dataset is by far the largest available today and is well suited 
to the study of language models since it covers a single 
music style. In order to allow the derivation of tonality-
independent chord labels from this dataset, we appended to 
the original annotations the initial tonality of each song. The 
above tonality-dependent labeling schemes and their 
tonality-independent variants resulted in a total of six 
sequences of chord labels for each song. 
 
4.2. Test and validation procedure 

 
N-gram models were trained up to order N=5 for the two 
minor/major labeling schemes and up to N=3 for the four 
other schemes. Due to memory issues, we could not perform 
tests with higher-order models. The smoothing parameters 
δΝ were sampled from 22 logarithmically-spaced values 
between 0.01 and 5 and the parameters λ0,…, λN-1 from 20 
values between 0.01 and 0.995. 

The quality of the models was assessed by 13-fold 
cross-validation. In order to avoid the potential “album 
effect” [9] due to variation of the musical style of the 
Beatles over the years, each of the 13 albums was 
successively considered as the test set, with the remaining 

12 albums composing the training set. 
For each fold, four perplexity values were computed, 

considering: 
(1) all N-grams in the training set, 
(2) all N-grams in the test set, 
(3) only the N-grams in the test set that were observed 

in the training set, 
(4) only the N-grams in the test set that were not 

observed in the training set. 
For each labeling scheme, the best model was selected 

as the one with lowest perplexity over the test set (2), 
averaged all folds. Ideally, this model should fit the test data 
as well as the training data, resulting in similar perplexity 
values (1) and (2). Hence the closer these two values, the 
more robust the model is to generalization. The additional 
perplexity values enable more detailed benchmarking, 
distinguishing between the generalization of the model to 
observed data and to non-observed data. 

 
4.3. Results 
 
Using JM smoothing, the best results were obtained for the 
largest tested order N, that is N=5 for the minor/major 
labeling schemes and N=3 for other schemes. By contrast, 
the best results using additive smoothing were always 
achieved with N=2, that is the order considered in most 
previous studies [4]. Higher-order models are consistent 
with music theory, which suggests that the dependency 
between chords in a sequence is often greater than only the 
previous chord. This shows that advanced smoothing 
techniques play a key role in attempting to reach the actual 
complexity of music. 

Figure 1 depicts the four perplexity values computed for 
the tonality-independent minor/major labeling scheme using 
either no smoothing or one of the two smoothing techniques. 
JM smoothing reduces the perplexity over the test set by 0.5 
bit/symbol compared to additive smoothing. This perplexity 
reduction can be seen to occur both over observed and non-
observed N-grams, denoting good generalization even to 
significantly different data. Nevertheless, the perplexity over 
non-observed data remains 0.6 bit/symbol larger than over 
observed data, suggesting that further improvements might 
be achieved using more advanced, possibly music-specific, 
smoothing techniques.  

The perplexity values obtained over the test set for all 
labeling schemes are listed in Table 1. Tonality-independent 
labeling reduces perplexity by 0.7 bit/symbol on average 
compared to tonality-dependent labeling. This is much 
larger than the quantity of information added by annotating 
the initial tonality of each song, that is log212 divided by the 
number of chords of that song or less than 0.05 bit/symbol. 
Thus tonality-independent labeling significantly improves 
the generalization capabilities of the model, as expected 
from music theory. 

We also observe that the perplexity for shorthand type 
labels  is  about  1.0 bit/symbol  larger than for minor/major 
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Figure 1 – Perplexities for the tonality-independent minor/ 

major labeling scheme, using the best model for each 
smoothing technique. 

 

Labeling scheme 
Tonality-
dependent 

Tonality-
independent 

Minor/major 3.1925 2.5463 

Shorthand types 4.2049 3.4908 

Harte’s with 
enharmonic equivalence 

5.1450 4.3028 

Table 1 – Perplexities over the test set, using Jelinek-Mercer 
smoothing and the best model for each labeling scheme. 

 

labels. This difference is smaller than that expected from the 
increase in the number of symbols, that is log2(204/24) 3.1 
bits/symbol. However the difference in perplexity between 
shorthand type labels and Harte’s labels is on the order of 
0.9 bit/symbol, which is consistent with the doubling of the 
number of symbols. Therefore the model was able to predict 
shorthand types to a larger extent than their underlying 
minor/major triads, but not dissonances and inversions.  

 

5. CONCLUSIONS 
 
We studied the modeling of musical chord sequences via 
probabilistic N-grams, focusing on the improvement of the 
robustness of the models to different data. We showed that 
tonality-independent chord labeling and advanced model 
smoothing techniques are crucial to achieve good genera-
lization capabilities and reduce perplexity compared to 
standard HMMs. We also found that the modeling of more 
complex chord types than the usual minor/major chords is 
feasible. This opens many research perspectives, whereby 
new smoothing techniques, possibly based on musicological 

expertise, could further improve the quality of the models up 
to rendering the actual complexity of music as a language. 
Implementation and memory issues are also worth 
considering so as to increase the model order. This research 
could lead to significant advances in several fields, 
including music information retrieval, audio to symbolic 
music transcription and computer-assisted composition. 
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