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ABSTRACT

Speech enhancement is the processing of speech signals in order
to improve one or more perceptual aspects. If the statistics of the
clean signal and the noise process are explicitly known, enhance-
ment could be ’optimally’ accomplished (minimizing a distortion
measure between the clean and the estimated signals). In practice
however, these statistics are not explicitly available, and the overall
enhancement accuracy critically depends on the estimation quality
of the unknown statistics. The estimation of noise (and speech)
statistics is particularly a critical issue and a challenging problem
under non-stationary noise conditions.
In this paper, we investigate the noise floor estimation using sub-
space decomposition. We examine the speech DFT rank limited
assumption. We propose a new noise PSD estimation scheme
(called Minimum Subspace Noise Tracking (MSNT)). The pro-
posed scheme can be interpreted as a combination of the subspace
structure and the minimum statistics tracking. Experimental investi-
gation of the MSNT tracking performance and comparison with the
state of the art is also presented.

Index Terms— single microphone speech enhancement; noise
floor estimation; non-stationary noise; subspace methods

1. INTRODUCTION

Speech enhancement aims at improving the performance of audio
communication in a noisy environment. Several practical meth-
ods have already been proposed. Among them, the group of fre-
quency domain methods has been relatively successful due to their
implementation simplicity and their capability of handling noise
non-stationarity to some extent. These schemes recover the clean
signal by applying a gain filter. The design of these filters relies
on the knowledge of the clean and noise signal statistics. In prac-
tice however, these statistics are not explicitly available and should
be estimated. The accuracy of the overall enhancement approach
critically depends on the estimation quality of the unknown statis-
tics. Particularly, an overestimation of the spectral noise variance
leads to over-suppression and to more speech distortion; while an
underestimation leads to a high level of residual noise.

Joint clean speech and noise Power Spectral Density (PSD) es-
timation is an underdetermined problem. In fact using a unique ob-
servation, we aim tracking both the clean speech and noise statistics.
A classic trick to overcome the underdeterminacy problem is to ex-
ploit speech pauses. The key observation is that the speech signal is
not present everywhere. Then, the noise PSD can be estimated and
updated during speech absence. Typically, a voice activity detec-
tor (VAD) is used to identify speech pause periods. Unfortunately,
these algorithms have some problems in low Signal-to-Noise Ratios
(SNRs), especially when the noise is non-stationary [1]. Consistent
accuracy can also not be achieved since VADs rely on a threshold

level (difficult to set in an arbitrary environment).
A tractable alternative of VAD based schemes is provided by Min-
imum Statistics (MS) [3, 2]. The MS algorithm is based on the
observation that even during speech activity the short term power
spectrum of the noisy signal frequently decays to values which are
representative of the noise power level. Then, by tracking the mini-
mum of the smoothed noisy power spectrum within a finite window,
an estimate of the noise floor can be obtained. The search memory
(for local minima tracking) needs to be long enough to bridge any
period of speech activity. It is assumed that a sliding window of
��� � � seconds is large enough to bridge high power speech seg-
ments. This implies that a sudden increase of the noise PSD will be
detected only with a �-seconds delay. That means also that the track-
ing of impulsive noise type is not possible. These facts constitute the
major drawbacks of the MS scheme.
Recently, a subspace decomposition based scheme was proposed for
noise floor estimation [4, 5]. The subspace considered herein char-
acterizes the time evolution of the noisy Discrete Fourier Transform
(DFT) coefficients. The basic observation is that in such a domain
the speech signal can be described with a low rank model, when
the noise is full rank. Therefore, a noise subspace can be identi-
fied, and the noise PSD is still updated even when speech is con-
stantly present. Simulations show that the Subspace Noise Tracking
(SNT) approach achieves better tracking capability, but is still suf-
fering from some problems in low SNR [4, 5].

In this paper, we propose a new noise PSD estimation scheme
(called Minimum Subspace Noise Tracking (MSNT)) exploiting
the limited-rank structure of the clean speech signal. The proposed
scheme can be interpreted as a combination of subspace structure
and minimum statistics tracking. Experimental comparison of MS,
SNT, and MSNT performances is also investigated.

Notations: Upper- and lower-case boldface letters denote matri-
ces and vectors, respectively. Upper- and lower-case normal letters
represent scalar constants and processes, respectively. Either as a
subscript or as an argument �, � and � refer respectively the time,
frame, and frequency indexes.

2. SUBSPACE DECOMPOSITION FOR SPEECH SIGNAL
IN DFT DOMAIN

Classic noise floor estimation (either based on VAD or MS) hinges
on the assumption that a speech signal is not constantly present. The
received signal in the pause frames is used to update the noise PSD
estimate. Herein, we exploit further speech signal structures in order
to get information on noise statistics even when speech is present.
We focus on the time evolution of the speech DFT coefficients.

The sampled time domain signal is divided into overlapping
blocks that are windowed by a smooth function, such as a Hanning
window. Each windowed block is transformed into the frequency
domain using a DFT. We use ���� �� and ���� �� to denote the
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complex DFT coefficients of the clean speech and the noise signals,
respectively. � represents the frequency index and � the time-frame
index (figure 1).

Fig. 1. Subspace decomposition in DFT domain.

We define correlation matrices in the DFT domain (for each DFT
coefficient) as shown in figure 1: we collect DFT coefficients per
frequency bin � that originate from the time frame ���� up to frame
�� �� and we form a vector ���� �� of size� � �� � ����. The
noisy speech correlation matrix (at the frequency bin � and the time
frame �) is:

����� �� � �
�
���� ������� ��

�
�

Assuming an additive noise model, we split the noisy speech corre-
lation matrix����� �� into:

����� �� � ����� �� ������ ��� (1)

We assume that ����� �� � ������ ���� (�� is the � � � di-
mensional identity matrix). This assumption holds for noise with a
small enough correlation time. The noise could be either white or
colored. However, the previous assumption is only valid if the DFT
coefficients (in 	��� ��) are computed from time domain frames that
are not overlapping. In case of overlapping frames, this assumption
will be violated. This noise coherence artifact could be alleviated by
applying a pre-whitening transform (see [4] for details).

Contrary to the noise correlations, the matrix ����� �� is as-
sumed to be rank limited (further, we will investigate the validity of
such assumption). We denote 
 the rank of this matrix (
 � �). In
such a case, the eigen decomposition of the received signal covari-
ance matrix�� can be expressed as:

�� � �
�
�� � �

�
���

�
�
� (2)

where �� � diag ������ � � � � ����� �� � � � � �� is a diagonal matrix
containing the eigenvalues of ��, and � is an unitary matrix con-
taining the corresponding eigenvectors. All quantities in the previ-
ous equation depend on ��� ��. As the treatment is identical for each
DFT coefficient, the DFT index ��� �� is suppressed for better read-
ability.

Next, we consider the experimental validation of the rank-
limited assumption. In [4], the authors compute the signal subspace
dimension 
 that is needed to describe at least ��	 of the energy of
the speech signal. It turned out that, for frequency bins containing
speech energy, the effectively needed dimension is 
 � 
�� on
average (� � �). Thus on average, the three lowest eigenvalues
contain less than 5% of the speech energy. Then, we investigate the

contribution of the clean speech signal on the �	 ordered eigenvalue.
Due to the bursty nature and the non-whiteness of the speech signal,
the relative contribution of the speech signal can be quantified using
the flatness measure:

�� �
harmonic average
arithmetic average

�

�
�

�

��


��
���


�
��

�

�

��


��
�


(3)

We use FM as a measure of:

� Non-whiteness: we consider the evolution of the ordered
eigenvalues with the frequency index (we average over
frames) (figure 2.a).

� Non-stationarity: we consider the evolution of the ordered
eigenvalues with the time index (we average over frequen-
cies) (figure 2.b).

As a reference, we plot the flatness measure of the noisy signal (con-
taminated with a stationary additive white noise) with respect to the
frame (figure 2.a) and frequency (figure 2.b) indexes. The flatness
measure of the noisy signal is plotted as a reference.

Fig. 2. Flatness of the ordered eigenvalues (�� � � � � � �� ).

One can remark that the relative contribution of the speech signal
decreases with increasing eigenvalue index. The noise PSD could
be tracked based on the DFT eigenvalue information (the smaller the
eigenvalue, the more consistent the information).

As stated in (2), the clean speech DFT coefficient lives in a low
dimension subspace. The signal subspace can be computed using an
eigen decomposition of the DFT covariance matrix; and the eigen-
values in the noise subspace can be exploited to update and track
the noise PSD (even in presence of the speech signal). Hendriks et
al. estimate the noise PSD by averaging the eigenvalues in the noise
subspace, i.e,

���� � �

� �


�	
�����

������ (4)

where ������� � � � ����� represent the � �
 smallest eigenvalues
of ������ �� and 
 is the assumed dimension of the signal subspace
(model order). The performance of the proposed approach (called
Subspace Noise Tracking (SNT) hinges on the estimation of the
model order
. The model order selection is particularly challenging
since ��� is estimated using few data-samples. Typically, the model
order and the data size have almost the same magnitude. In [4], the
authors use a Bayesian approach to classify the noisy eigenvalues
between the signal and noise subspaces (assuming slowly varying
noise). The model order corresponds to the cardinality of the eigen-
values belonging to the signal subspace. The noise PSD is updated
by averaging the eigenvalue classified to the noise subspace (as in
(4)).
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3. MINIMUM SUBSPACE NOISE TRACKING FOR NOISE
PSD ESTIMATION

The SNT approach focuses on the noise PSD estimation under non-
stationary conditions. The structure of the DFT coefficients time
evolution is exploited to enhance noise tracking. The signal vs. noise
subspace decomposition is first performed. The noise PSD is then
updated using the projection of the noisy DFT coefficient onto the
noise subspace.

As we have noticed in the previous section, a key parameter in
the SNT approach is the signal subspace dimension (model order).
The model order selection is a challenging problem (VAD can be in-
terpreted as a simplified model order selection). The order selection
is a difficult detection problem due to the:

� Bursty nature of the speech signal: Speech signals are
highly non-stationary. In addition, the spectral character-
istics (power, sparseness, flatness...) between voiced and
unvoiced frames are quite different.

� Speech eigenvalue distribution: there is no clear distinction
between the noise and the signal subspace. Despite the de-
pendence on the speech signal decreases with the eigenvalue
index, it cannot be neglected, especially at high SNR.

In the SNT scheme, the classification strategy leads to a systematic
model order underestimation (especially in unvoiced frames and at
low SNR). This fact leads to noise PSD overestimation. Simulations
illustrate that such estimation error is difficult to alleviate as it is a
function of the unknown speech signal. Subjective tests show that
model order selection inaccuracy decreases the speech intelligibility.

In this paper, we propose exploiting the DFT evolution structure
in a different way. We take a more ’pessimistic’ attitude in the sense
that:

� We consider only the minimum eigenvalue to update the noise
PSD. The use of the minimum eigenvalue is motivated by
three main issues. First, as shown in figure 2 the minimum
eigenvalue is less depending on the speech signal and pro-
vides more consistent information. The second motivation is
related to complexity. In fact, several approaches are intro-
duced to efficiently estimate the minimum eigenvalue (with
no need to perform a complete eigenvalue decomposition).
Finally, if the noise varies slowly with time, adaptive schemes
can be proposed to increase the computational efficiency of
the minimum eigenvalue estimation (exploiting the fact that
the current noise PSD estimation gives a good initialization).

� We assume that (for a given frequency and using a sufficiently
long memory time) at least one DFT covariance matrix is
rank limited. Exploiting the observation that the minimum
power level reaches the noise level, we propose a ’Minimum
Statistics’-like approach to update the noise PSD. Notice that
the rank-limited assumption is not assumed for each time-
frequency bin and model order selection is no-longer needed.

Compared to the MS approach, the Minimum Subspace Noise
Tracking (MSNT) exploits further the structure of the speech signal
time variation (not only in terms of presence or absence). In the
previous section, we have shown that often the DFT covariance
matrix is rank limited. In these frames, noise PSD information is
available (even in presence of a speech signal). Thus, the MSNT
does not need a large memory to perform an acceptable steady state
performance. Hence, it provides better noise tracking.

The MSNT leads also to a biased noise PSD estimate (like MS
and SNT). The bias is mainly due to the minimum statistic based

tracking, i.e.,

� ���� ���� � ��� �� ���� �

The bias depends mostly on the search memory � , and may be
corrected using a multiplicative bias compensation factor. The com-
pensation factor may be trained over a speech data degraded with
white noise with a known variance ��� � �. Simulations show that,
compared to SNT [4], the MSNT bias is less dependent on the un-
known speech signal. Therefore, it is more robust to the input SNR
and to the speaker characteristics.
The MSNT scheme is summarized in the table below

Minimum Subspace Noise Tracking Algorithm.

# Computation

Initialization
� Tracking bias � ��� training.
� Pre-whitening transform ����� computation.

Iteration
for � � � 	 �� do

� DFT covariance matrix

�����	 �� �
�

�� 
 �� 
 �

�����
������

��
	 ���	�
	 ��

� Pre-whitening transform
���
�����	 �� � �

�

�

�
��������� ��	 ���

�

�

�
��� ���

���
�����	 �� �
tr ���������

�
���
�����	 ��

 Minimum eigenvalue estimation
�������	 �� � ���

�
���
� � � � ���


�
� Noise PSD tracking

������	 �� � �

����
���

�
�������� 
	 ��

�
�������

end for

Table 1. MSNT scheme for non-stationary noise tracking.

4. EXPERIMENTAL RESULTS
In this section, we investigate the tracking and the misadjustment ac-
curacy of Subspace Noise Tracking (SNT) and Minimum Subspace
Noise Tracking (MSNT), respectively. We also compare the sub-
space based schemes to the Minimum Statistics (MS).

For better understanding of the advantage and drawbacks of the
three tracking schemes (MS, SNT, MSNT), we consider a simple
white Gaussian noise scenario. The noise non-stationarity is in-
troduced by two abrupt changes in the noise level. Indeed, the in-
put SNR varies suddenly from 0 dB to -10 dB, then back to 0 dB.
The time-domain signal (sampled at 8 kHz) is divided into overlap-
ping blocks. These blocks are segmented using Hanning smoothing
windows (length = 32 ms, overlap = 87.5%). A smoothing factor
 � ��� is applied to the noise PSD estimate. Figure 3 illustrates
the MS noise floor estimation accuracy (with appropriate bias com-
pensation).

As expected, minimum statistics leads to good final misadjust-
ment accuracy at the expense of a large estimation delay. This delay
makes the MS unsuited for fast varying noise and leads to an annoy-
ing impulsive remaining noise.
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Fig. 3. Perfect(black) vs. MS(blue) white noise tracking.

Next, we add the curve of the noise PSD tracking using the SNT
scheme (Fig.4).
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Fig. 4. Perfect(black), MS(blue) and SNT(red) white noise tracking.
We observe that the SNT performs a good tracking (comparing to
MS). Indeed, exploiting the speech rank-limited property, SNT up-
dates the noise PSD even in presence of the speech signal. On the
other hand, we remark that SNT locally overestimates noise level.
The origin of this artifact is the systematic model order selection er-
ror (especially in unvoiced frames and at low SNR). In such a case,
some of the speech energy is considered as a part of the noise. These
errors are difficult to predict and alleviate (as they are function of the
unknown speech signal and the input SNR). Subjective tests show
that such artifact reduces considerably the speech intelligibility (but
with no significant consequence on the speech quality).
In Fig. 5 and Fig. 6, we add the curves of the noise PSD tracking us-
ing the MSNT scheme using respectively a search memory� � ��

and� � ��.
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Fig. 5. Perfect(black), MS(blue), SNT(red) and MSNT(green) white
noise tracking (M=30).

We notice that, depending on the search memory, the MSNT leads to
a different tradeoff between the estimation delay and the noise over-
estimation. However comparing to MS, MSNT uses lower estima-
tion delay to perform an equivalent final misadjustment. Intuitively,
due to the speech rank-limited nature, we observe more often frames
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Fig. 6. Perfect(black), MS(blue), SNT(red) and MSNT(green) white
noise tracking (M=60).

containing no-speech in some directions than frames containing no-
speech in all directions.

Similar conclusions can be drawn while using different non-
stationary noise sources (originated respectively from the NOIZEUS
[6] database, a passing car and a passing train).
Subjective tests reveal that the MS performs better in terms of intel-
ligibility, while SNT leads to a better comfort quality. MSNT leads
to a compromise between the two perceptual criteria (depending on
the search memory).

5. CONCLUDING RESULTS

We have introduced a new noise floor estimation scheme (called
Minimum Subspace Noise Tracking (MSNT)). The proposed scheme
exploits the speech subspace structure without an explicit model or-
der selection (the update is performed via a local search approach).
Comparing to SNT, the proposed approach seems to be advanta-
geous in terms of consistency, complexity and adaptivity. Simula-
tions show that MS leads to good final misadjustment accuracy at the
expense of a large estimation delay; while the SNT performs good
tracking accuracy except for occasional noise floor overestimation.
Such artifact considerably reduces the speech intelligibility. The
MSNT performs an intermediate tracking vs. final misadjustment
(quality vs. intelligibility) tradeoff, and generally leads to an in-
crease in non-stationary noise floor estimation accuracy (compared
to both MS and SNT).
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