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ABSTRACT
In this paper, we study the noise-reduction problem in the Karhunen-
Loève expansion domain. We develop two classes of optimal fil-
ters. The first class estimates a frame of speech by filtering the cor-
responding frame of the noisy speech. We will show that several
well-known existing methods belong or are closely related to this
category. The second class, which has not been studied before, ob-
tains noise reduction by filtering not only the current frame, but also
a number of previous consecutive frames of the noisy speech. We
will discuss how to design the optimal noise-reduction filters in each
class and demonstrate the properties of the deduced optimal filters.

Index Terms— Noise reduction, Karhunen-Loève expansion,
Pearson correlation coefficient, Wiener filter, tradeoff filter.

1. PROBLEM FORMULATION
The noise-reduction problem considered in this paper is to recover a
signal of interest (clean speech or desired signal) x(k) of zero mean
from the noisy observation (microphone signal)

y(k) = x(k) + v(k), (1)
where k is the discrete time index, and v(k) is the unwanted additive
noise, which is assumed to be a zero-mean random process (white
or colored) and uncorrelated with x(k). In a vector form, the signal
model given in (1) can be written as

y(k) = x(k) + v(k), (2)
where y(k) =

[
y(k) y(k − 1) · · · y(k − L + 1)

]T
, su-

perscript T denotes transpose of a vector or a matrix, L is the frame
length, and x(k) and v(k) are defined similarly to y(k). Since x(k)
and v(k) are uncorrelated, the correlation matrix of the noisy sig-
nal is equal to the sum of the correlation matrices of the speech and
noise signals, i.e., Ryy = Rxx + Rvv , where Ryy = E[y(k)yT (k)]
is the correlation matrix of the signal y(k), and Rxx and Rvv are
the correlation matrices of the signals x(k) and v(k) respectively,
which are defined similarly to Ryy . With this vector form of the sig-
nal model, the noise-reduction problem becomes one of estimating
x(k) from the observation vector y(k), which is generally achieved
by the following filtering process [1]–[3]:

z(k) = Hy(k) = H [x(k) + v(k)] , (3)
where H is a filtering matrix of size L × L. So, the core problem of
noise reduction is to find a matrix H that would attenuate the noise
as much as possible while keeping the distortion of the clean speech
low.

2. KARHUNEN-LOÈVE EXPANSION AND ITS DOMAIN
In this section, we briefly recall the basic principle of the so-called
Karhunen-Loève expansion (KLE) and show how we can work in
the KLE domain.

Let the L × 1 vector x(k) denote a data sequence drawn from a
zero-mean stationary process with the correlation matrix Rxx. This
matrix can be diagonalized as follows [4]:

QTRxxQ = Λ, (4)

whereQ = [q1 q2 · · · qL] andΛ = diag[λ1 λ2 · · · λL] are, re-
spectively, orthogonal and diagonal matrices. The orthonormal vec-
tors q1, q2, . . . , qL are the eigenvectors corresponding, respectively,
to the eigenvalues λ1, λ2, . . . , λL of the matrix Rxx.

The vector x(k) can be written as a combination (expansion) of
the eigenvectors of the correlation matrix Rxx as follows:

x(k) =
L∑

l=1

ax,l(k)ql, (5)

where
ax,l(k) = qT

l x(k), l = 1, 2, . . . , L, (6)

are the coefficients of the expansion. The representation of the ran-
dom vector x(k) described by (5) and (6) is the KLE where (5) is the
synthesis part and (6) represents the analysis part [4].

From (6), we can easily verify that

E [ax,l(k)] = 0, l = 1, 2, . . . , L (7)

and

E [ax,i(k)ax,j(k)] =

{
λi, i = j
0, i �= j

, i, j = 1, 2, . . . , L. (8)

It can also be checked from (5) that

L∑
l=1

a2
x,l(k) = ‖x(k)‖2

2 , (9)

where ‖x(k)‖2 is the Euclidean norm of x(k). The previous expres-
sion shows the energy conservation through the KLE process.

One of the most important aspects of the KLE is its potential to
reduce the dimensionality of the vector x(k) for low-rank signals.
This idea has been extensively exploited in different manners for
noise reduction where the signal of interest (speech) is assumed to
be a low-rank signal [2], [3]. In what follows, we will take a different
approach by working directly in the KLE domain.

Let us assume that the correlation matrix, Rvv , of the noise is
known or can be estimated from the noisy speech. Since the cor-
relation matrix, Ryy , of the noisy signal can be computed from the
observations, an estimate of the correlation matrix Rxx can be easily
computed according to Rxx = Ryy − Rvv . As a result, the orthog-
onal matrix Q and diagonal matrix Λ can be determined. Now, a
quick look at (5) tells us that in order to estimate the desired signal
vector x(k) we only need to estimate the coefficients ax,l(k) since
the eigenvectors ql are known. Left-multiplying (2) by q

T
l , we get

ay,l(k) = qT
l y(k) = qT

l x(k) + qT
l v(k)

= ax,l(k) + av,l(k), l = 1, 2, . . . , L. (10)

Again, we see that
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L∑
l=1

a2
y,l(k) = ‖y(k)‖2

2 ,

L∑
l=1

a2
v,l(k) = ‖v(k)‖2

2 . (11)

We also have (for i, j = 1, 2, . . . , L)

E [ay,i(k)ay,j(k)] =

{
λi + qT

i Rvvqi, i = j
qT

i Rvvqj , i �= j
. (12)

Expression (10) is equivalent to (2) but in the KLE domain. In the
rest of this paper, we assume that |qT

i Rvvqj | � λi + qT
i Rvvqi or

|qT
i Rvvqj | ≈ 0, for i �= j, so that we can estimate the ax,l, l =

1, 2, . . . , L, independently of each others. Clearly, our problem this
time is to find an estimate of ax,l(k) by passing ay,l(k) through a
linear filter, i.e.,

az,l(k) = hT
l ay,l(k) = hT

l [ax,l(k) + av,l(k)] , (13)

where l = 1, 2, . . . , L, hl = [hl,0 hl,1 · · · hl,Ll−1]
T is a finite-

impulse-response (FIR) filter of length Ll,

ay,l(k) =
[

ay,l(k) ay,l(k − 1) · · · ay,l(k − Ll + 1)
]T

,

and ax,l(k) and av,l(k) are defined similarly to ay,l(k). We see
that the filters hl can take different lengths for the different spectral
bands. Finally, an estimate of the vector x(k) would be

z(k) =
L∑

l=1

az,l(k)ql. (14)

Later in this paper, we will show some filter design examples for
noise reduction, but we first give some important definitions.

3. PERFORMANCE MEASURES
In this paper, we use the signal-to-noise ratio (SNR) and its improve-
ment to evaluate the noise-reduction performance and the speech-
distortion index to assess the amount of speech distortion due to the
filter hl.

3.1 Signal-to-Noise Ratio
With the time-domain signal model given in (1), the SNR of the

noisy signal can be written as,

SNR =
E

[
x2(k)

]
E [v2(k)]

=
σ2

x

σ2
v

=

∑L
l=1 λl∑L

l=1 qT
l Rvvql

. (15)

In the KLE domain, it is also very useful to study the SNR in each
spectral subband. With the KLE-domain model shown in (10), we
define the subband input SNR as

SNRl =
E

[
a2

x,l(k)
]

E
[
a2

v,l(k)
] =

λl

qT
l Rvvql

, l = 1, 2, . . . , L. (16)

After noise reduction with the model given in (13), the subband out-
put SNR is

oSNR(hl) =
hT

l Raxax,lhl

hT
l Ravav,lhl

, l = 1, 2, . . . , L (17)

and the fullband output SNR is

oSNR (h1:L) =

∑L
l=1 h

T
l Raxax,lhl∑L

l=1 h
T
l Ravav,lhl

, (18)

where Raxax,l = E
[
ax,l(k)aT

x,l(k)
]
and Ravav,l = E[av,l(k)

aT
v,l(k)] are the correlation matrices of the sequences ax,l(k) and

av,l(k), respectively.
It can be easily checked that

∑L
l=1 SNRl ≥ SNR, and∑L

l=1 oSNR(hl) ≥ oSNR (h1:L), which means that the aggrega-
tion of the subband SNRs is greater than or equal to the real fullband
SNR.

3.2 Speech-Distortion Index
The speech-distortion index was introduced in [1], [5] to eval-

uate the amount of speech distortion. Here we extend the original
definition to the model given in (13) and define the subband speech-
distortion index as

υsd (hl) =
E

{[
ax,l(k) − hT

l ax,l(k)
]2}

λl
. (19)

At the subband l, the higher the value of υsd (hl), the more the
speech distortion. The fullband speech-distortion index is

υsd (h1:L) =

∑L
l=1 E

{[
ax,l(k) − hT

l ax,l(k)
]2}

∑L
l=1 λl

. (20)

4. OPTIMAL FILTERS IN THE KLE DOMAIN
In this section, we are going to derive two classes of optimal filters
in the KLE domain depending on the length, Ll, of the filters hl.

4.1 Class I
In this first category, we consider the particular case where

L1 = L2 = · · · = LL = 1. Hence hl = hl,0, l = 1, 2, . . . , L, are
simply scalars. For this class of filters, we always have oSNR(hl) =
SNRl, ∀l. Therefore, the subband SNR cannot be improved. But
the fullband output SNR can be improved with respect to the in-
put SNR. From the previous section we know that oSNR (h1:L) ≤∑L

l=1 oSNR(hl), which gives the upper bound of the output SNR.

4.1.1 Wiener Filter
Let us define the error signal between the clean speech and its

estimate in the KLE domain

el(k) = ax,l(k) − az,l(k) = ax,l(k) − hl,0ay,l(k), (21)

the corresponding mean-square error (MSE) can be written as

J (hl,0) = E
[
e2

l (k)
]
, l = 1, 2, . . . , L. (22)

The Wiener filter is easily found by taking the gradient of J (hl,0)
with respect to hl,0 and equating the result to zero:

hW,l,0 =
E

[
a2

x,l(k)
]

E
[
a2

y,l(k)
] =

λl

λl + qT
l Rvvql

=
SNRl

1 + SNRl
, l = 1, 2, . . . , L. (23)

This optimal filter is the equivalent form of the frequency-domain
Wiener filter [6]. The estimator of the vector x(k) can be written as

zKLE,W(k) =
L∑

l=1

hW,l,0ay,lql = HKLE,Wy(k), (24)

where HKLE,W =
∑L

l=1 hW,l,0qlq
T
l is the time-domain version of

the KLE-domain filters hW,l,0 (l = 1, 2, . . . , L). We easily find that

HKLE,W = QΛ
[
Λ + diag

(
QTRvvQ

)]−1

QT . (25)

Property 1. oSNR (HKLE,W) ≥ SNR. (The proof is not shown
here due to space limitation.) Therefore, this method improves the
(fullband) SNR.

4.1.2 Tradeoff Filter
The error signal defined in (21) can be rewritten as follows,

el(k) = ex,l(k) − ev,l(k), l = 1, 2, . . . , L, (26)
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where ex,l(k) = (1−hl,0)ax,l(k) is the speech distortion due to the
linear filter, and ev,l(k) = hl,0av,l(k) represents the residual noise.

An important filter can be designed by minimizing the speech
distortion with the constraint that the residual noise is smaller than a
positive threshold level. This optimization problem can be translated
mathematically as

min
hl,0

Jx(hl,0) subject to Jv(hl,0) ≤ βqT
l Rvvql, (27)

where Jx(hl,0) = E
[
e2

x,l(k)
]
, Jv(hl,0) = E

[
e2

v,l(k)
]
, l =

1, 2, . . . , L, and 0 < β < 1 in order to have some noise reduction.
If we use a Lagrange multiplier, μ(≥ 0), to adjoin the constraint to
the cost function, we easily find the optimal filter:

hT,l,0 =
λl

λl + μqT
l Rvvql

, l = 1, 2, . . . , L, (28)

where the Lagrange multiplier satisfies Jv(hl,0) = βqT
l Rvvql, l =

1, 2, . . . , L. Hence, hT,l,0 is a Wiener filter with adjustable input
noise level μqT

l Rvvql. It can be shown that oSNR (hT,1:L) ≥
SNR. Therefore, this method improves the (fullband) SNR.

Similar to the Wiener filter, the KLE-domain tradeoff filter can
be written equivalently into the time domain:

HKLE,T = QΛ
[
Λ + μdiag

(
QTRvvQ

)]−1

QT . (29)

This optimal filter is the equivalent form of the subspace approach
[2] and strictly equivalent to the filter proposed in [7].

Many other optimal and suboptimal filters such as the parametric
Wiener filter can be easily developed.

4.2 Class II
Although they can improve the fullband SNR, the optimal fil-

ters derived in Class I have no impact on the subband SNR. In this
subsection, we consider another category of filters hl with length
Ll > 1. In this case, it is possible to improve both the subband and
fullband SNRs at the same time.

4.2.1 Wiener Filter
From the MSE

J (hl) = E

{[
ax,l(k) − hT

l ay,l(k)
]2

}
, l = 1, 2, . . . , L, (30)

we easily deduce the KLE-domain Wiener filter:

hW,l = R−1
ayay,lRaxax,lul =

(
Il − R−1

ayay,lRavav,l

)
ul, (31)

where Rayay,l is the covariance matrix of the signal ay,l(k), ul =

[1 0 · · · 0]T is a vector of length Ll, and Il is the identity matrix of
size Ll × Ll.

Property 2. With the optimal KLE-domain Wiener filter given in
(31), the subband output SNR is always greater than or equal to the
subband input SNR, i.e., oSNR (hW,l) ≥ SNRl, ∀l.
Proof. Let us evaluate the squared Pearson correlation coefficient
(SPCC) between ay,l(k) and hT

W,lay,l(k), which is defined as

ρ2
(
ay,l, hT

W,lay,l

)
=

E2
[
ay,l · hT

W,lay,l

]
E[a2

y,l] · E
[
(hT

W,lay,l)2
] . (32)

With some simple manipulation, we obtain

ρ2
(
ay,l, hT

W,lay,l

)
=

(
uT

l Rayay,lhW,l

)2

(λl + qT
l Rvvql)

(
hT

W,lRayay,lhW,l

)

=
λl

λl + qT
l Rvvql

· λl

uT
l Raxax,lhW,l

=
ρ2 (ax,l, ay,l)

ρ2
(
ax,l, hT

W,lay,l

) . (33)

Therefore ρ2 (ax,l, ay,l) = ρ2
(
ay,l, hT

W,lay,l

) · ρ2
(
ax,l, hT

W,lay,l

)
≤ ρ2

(
ax,l, hT

W,lay,l

)
. It is easy to check that

ρ2 (ax,l, ay,l) =
SNRl

1 + SNRl
, (34)

ρ2
(
hT

W,lax,l, hT
W,lay,l

)
=

oSNR (hW,l)

1 + oSNR (hW,l)
, (35)

and

ρ2
(
ax,l, hT

W,lay,l

)
= ρ2

(
ax,l, hT

W,lax,l

)
· ρ2

(
hT

W,lax,l, hT
W,lay,l

)

≤ ρ2
(
hT

W,lax,l, hT
W,lay,l

)
.

Hence

SNRl

1 + SNRl
≤ oSNR (hW,l)

1 + oSNR (hW,l)
. (36)

It is immediately clear that

oSNR (hW,l) ≥ SNRl, l = 1, 2, . . . , L, (37)

which completes the proof.

Property 3. With the optimal KLE-domain Wiener filter given in
(31), the fullband output SNR is always greater than or equal to the
input SNR, i.e., oSNR (hW,1:L) ≥ SNR.
Proof. The proof is similar to the previous one by using a more
general version of the SPCC.

4.2.2 Tradeoff Filter
The filter for this approach is obtained by solving the following

optimization problem:

min
hl

Jx(hl) subject to Jv(hl) ≤ βqT
l Rvvql, l = 1, 2, . . . , L, (38)

where

Jx(hl) = E

{[
(ul − hl)

T ax,l

]2
}

, (39)

Jv(hl) = E

[(
hT

l av,l

)2
]

, (40)

and 0 < β < 1 in order to have some noise reduction. If we use
a Lagrange multiplier, μ(≥ 0), to adjoin the constraint to the cost
function, we easily find the optimal filter:

hT,l = (Raxax,l + μRavav ,l)
−1 Raxax,lul

=
[
Il + (μ − 1)R−1

ayay,lRavav,l

]−1

hW,l, (41)

where the Lagrange multiplier satisfies Jv(hl) = βqT
l Rvvql, l =

1, 2, . . . , L. In practice it is not easy to determine μ. Therefore,
when this parameter is chosen in an ad-hoc way, we have four cases.
1) μ = 1: in this case, hT,l = hW,l. 2) μ = 0: in this circumstance,
hT,l = ul. With this filter, there will be no speech distortion, but
no noise reduction as well. 3) μ > 1: this corresponds to more
aggressive noise reduction (compared with Wiener). So the residual
noise level would be lower, but it is achieved at the expense of higher
speech distortion. 4) μ < 1: this corresponds to less aggressive
noise reduction (compared with Wiener). In this situation, we get
less speech distortion but not so much noise reduction.
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Fig. 1. Class I filters: performance versus L in white Gaussian noise
with: SNR = 10 dB, αy = 0.985, and αv = 0.995.
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Fig. 2. Class II filters: performance versus Ll in white Gaussian
noise with: SNR = 10 dB, αay = 0.8, αav = 0.91, and L = 20.

5. EXPERIMENTS
We present two sets of experimental results to demonstrate the per-
formance of the developed KLE-domain noise-reduction filters.

The speech signal used in our experiments was recorded from
a female speaker in a quiet office environment. It was sampled at
8 kHz. The overall length of the signal is 30 s. The noise used is
a computer generated white Gaussian random process. The noisy
speech is obtained by adding noise to the clean speech.

To implement the optimal noise-reduction filters developed in
Section 4, we need to know the statistics of both the noisy and noise
signals. Specifically, the Class I filters require the knowledge of the
covariance matrices Ryy and Rvv , while the Class II filters need to
know the matrices Rayay,l and Ravav,l in addition to Ryy and Rvv .
In this study, for the Class I filters, we estimate Ryy through the
widely used recursive approach,

Ryy(k) = αyRyy(k − 1) + (1 − αy)y(k)yT (k), (42)

where αy is a forgetting factor. The matrix Rvv is directly computed
from the noisy signal (to avoid the influence of the noise estima-
tion error on the parameter optimization) using the same recursive
method as in (42) but with a different forgetting factor αv . We have
performed a set of experiments to study the impact of the forgetting
factors αy and αv on the noise-reduction performance. It turned
out that the best performance was obtained when αv = 0.995,

αy = 0.985. Another important parameter in Class I is the fil-
ter length L. Figure 1 plots the performance as a function of filter
length L. As seen, good performance for all the studied algorithms
is achieved when the filter length L is around 20.

Unlike the Class I filters where each frame may have a different
transformation Q, the Class II algorithms assume that all the frames
share the same Q transformation. So, the estimation of Q is rela-
tively easier than that for the Class I case. We simply use the long-
term sample average to compute the covariance matrices Ryy and
Rvv , thereby obtaining an estimate of Rxx and Q. This Q matrix is
then applied to each frame of the signal to compute the KLE coeffi-
cients ay,l, and av,l. We then estimate the matrix Rayay,l using the
recursive method similar to (42), i.e.,

Rayay,l(k) = αay,lRayay,l(k − 1)

+(1 − αay,l)ay,l(k)aT
y,l(k), (43)

where αay,l, same as αy in (42), is a forgetting factor. The Ravav,l

matrix is estimated using the same recursion given in (43), but with
a different forgetting factor αav ,l. Experiments were conducted to
study the impact of αav,l and αay ,l on the noise-reduction perfor-
mance, and good performance was achieved when αav ,l = 0.91,
αay,l = 0.8, l = 1, . . . , L. Another important parameter in Class
II is the filter length Ll. Figure 2 shows the noise-reduction per-
formance as a function of the filter length Ll. It is seen that as Ll

increases, the output SNR increases first to its maximum, and then
decreases slightly. In comparison, the speech distortion index with
both methods increases monotonically with Ll. Taking into account
of both SNR improvement and speech distortion, we would suggest
to use Ll between 5 and 10.

Comparing Figs. 2 and 1, one can see that, with the same L, the
optimal filters in Class II can achieve much higher SNR gain than the
filters of Class I. The Class II filters also have slightly more speech
distortion. But the additional amount of distortion compared to that
of the Class I filters is not significant when Ll ≤ 10. This indicates
that the Class II filters may have a great potential in practice.

6. CONCLUSIONS
In this paper, we have studied the noise-reduction problem in the
Karhunen-Loève expansion domain. We have discussed two classes
of optimal noise-reduction filters in that domain. While the first class
of filters estimates a frame of speech by filtering only the corre-
sponding frame of the noisy speech, the second class of filters are
inter-frame techniques, which obtain noise reduction by filtering not
only the current frame, but also a number of previous consecutive
frames of the noisy speech. Through experiments, we demonstrated
that better noise reduction performance can be achieved with the
Class II filters when the parameters associated with this class are
properly chosen, which demonstrated the great potential of the fil-
ters in this category for noise reduction.
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