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ABSTRACT

In this work, we construct a novel scheme for efficient perceptual
coding of audio for robust communication between encoders and
wireless hearing aids. To limit the physical size of the hearing aids
and to reduce power consumption and thereby increase the lifetime
expectancy of the batteries, the hearing aids are constrained to be
of low complexity. We therefore provide an asymmetric strategy
where most of the computational load is placed at the encoding side.
We make use of multiple-description coding. This combats possible
erasures on the wireless link between the encoder and the hearing
aids without introducing significant delay. Furthermore, we employ
psychoacoustically optimized noise-shaping quantizers based on the
moving-horizon principle, which exploits a finite prediction horizon.

Index Terms— Multiple-description coding, noise shaping, per-
ceptual audio coding, low delay source coding

1. INTRODUCTION

The aim of this work is to encode and communicate audio from a re-
mote encoder (e.g., cell phone, ipod, radio, tv, concert) over a wire-
less link to a pair of hearing aids.

If the encoder is the hearing aid itself, a cell phone, or a tv, then
it is essential that the latency is kept low. Low latency is important in
order to establish lip synchronization, to avoid distortions due to a di-
rect path acoustic signal reaching the eardrums out of synchronicity
with the hearing aid output, and to facilitate a real-time communica-
tion situation We will assume that the maximum tolerable latency is
on the order of a few milliseconds.

Due to battery and space considerations, the computational com-
plexity at the decoder should be kept low. Thus, besides the cost of
operating the antenna(s) and the demodulators, we only allow simple
scaling and table look-up operations in this work.

Since the persons wearing the hearing aids are often not spa-
tially stationary, the transmission channel is suscept to fading. In
order to guarantee a certain degree of robustness towards channel im-
pairments without introducing additional delay, we rely on multiple-
description (MD) coding [1]. We consider the general case of n
channels. For example, each of the two hearing aids may have one
or more receive antennas and furthermore, they communicate with
each other. Thus, several channels are available even in the single
person situation.

To achieve perceptually efficient encoding without introducing
large delays, we employ moving-horizon (MH) quantization tech-
niques at the encoder [2].
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Fig. 1. The encoder consists of two parts; the moving-horizon
multiple-description MH/MD Encoder and the Psychoacoustic
model.

MD coding was recently used for robust perceptual audio cod-
ing [3, 4, 5]. In [3, 4], the case of two descriptions was considered,
whereas in [5] it was shown, that even with highly unreliable net-
works, it is possible to achieve audio streaming of acceptable quality
by using more than two descriptions. In [4, 5], perceptual models
were derived at the encoder. These needed to be encoded and trans-
mitted to the decoder as side information, in addition to the encoded
audio data. It turns out that the bit rate required for encoding the per-
ceptual model is up to 8 kbps [4, 5]. Since this model is required in
all the descriptions, the bit rate of the side information can be signifi-
cant. Moreover, it is an open question how to optimally distribute the
bit budget between the perceptual model and the actual audio data.

MH quantization was recently cast in the framework of low de-
lay audio coding [2]. In [2], given a fixed perceptual weighting filter,
it was shown that, by increasing the optimization horizon, better per-
formance could be achieved at the expense of more complexity at the
encoder. The delay of the design in [2], was dictated by that of the
optimization horizon, i.e. was on the order of a few samples.

In the work presented in this paper, we first extend [2] to the
case of a time-varying perceptual weighting filter. We then show
how one can combine MD coding and MH quantization in a percep-
tually efficient manner. The overall delay of the proposed design,
depends upon the choice of perceptual model. For example, if the
psychoacoustic model of MPEG1 layer 1 [6] is chosen, then the de-
lay is about 6 ms. at 44.1 kHz. sampling frequency. This delay can
be reduced to less than 1 ms. if we do not time-align the perceptual
model with the current input sample. In our design, we do not need
to transmit the perceptual weighting filter as side information to the
decoder. Thus, we avoid the issue of having to distribute the bits
between the audio data and the perceptual model.

The encoder and decoder of our proposal are presented in
Fig. 1(a) and Fig. 1(b), respectively.
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2. PRELIMINARIES

In this section, we present background material on MH quantization,
psychoacoustic modelling, and MD quantization. We furthermore
show how to adapt and extend these concepts so that they are appli-
cable within our framework.

2.1. Moving Horizon Quantization

In MH quantization, the current scalar sample x, € R is com-
bined with N — 1 future samples and quantized using a vector
quantizer QX (-) [2]. Thus, the input to the quantizer is the N-
dimensional vector T = (Zk,Tk+1,- - ,Tk+N—1) and the output
of the quantizer, i.e. the quantized version of Z is the vector
Uk = (Yk,Yk+1, - ,Yk+N—1). More precisely, given the cur-
rent input vector Zy, the quantizer Q5 (-) minimizes a cost function,
J¥ (), which includes perceptual weighting. In this work, we define
the cost function to be

J;év (ik) = Z E?
i=k
where ¢; € R is the perceptually weighted error at the ith time-lag,
that is

)

K
@2 hix(Z—9) 2> hin(Tion — yin) (2
n=0

where h; = (hio,hi1,...,hix) denotes the set of filter co-
efficients of the perceptual weighting filter H;(z) to be used at

time ¢ and * is the linear convolution operator. Thus, €;(z)
Hi(2)(2(2) - y(2)) and

K
Hi(2) =1+ Y hinz " 3)
n=1

is a causal linear time varying filter of finite order K. In (3), h;,0 = 1
foralliand h;,, = 0forn < 0and n > K.
It follows that, given an input vector Z, the (locally) optimal
output vector 7; = Qp (Z1) (for the current time k) is given by
g = arg min Ji' (Zy) )
k€
where ) denotes the constrained alphabet (or codebook) of ¥y.

The output of the MH encoder is then simply taken to be yy, i.e.
the first sample of the quantized vector ;. Thus, an MH encoder
consists of the non-linear map Q5 (Z1,) = i which is followed by
a function that simply picks out the scalar element y;. At any time
k, the MH encoder therefore takes as input the current sample x, (as
well as N — 1 future samples) and outputs a single sample yx.

It was shown in [2] that for the special case of N = 1 and a
fixed perceptual weighting filter, MH quantization is algebraically
equivalent to noise-shaping quantization. Choosing N > 1 gives, in
general, a lower weighted reconstruction MSE.

2.2. Psychoacoustic Model

The specific choice of psychoacoustic model is not essential for our
design. We can, for example, choose the model from the MPEG1
layer 1 standard [6], which is based on a block of M = 512 samples.

The perceptual filter hy,, to be used at time , is based on a block
of M samples. This block can be time-aligned with the current sam-
ple by e.g., allowing a delay of M /2 samples. Alternatively, the end
point of the block can be aligned with the current sample, so that
the block contains the current sample x, as well as the past M — 1
samples.
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At every time instant we update the filter. Thus, the sequence of
filters {hs} for K = 0,1..., may be seen as a single time varying
filter. We note that, due to the high degree of overlap between con-
secutive blocks of M samples, the filters hj, and hy1 are likely to
be very similar in a mean square sense.

In order to obtain the perceptual filter hy, of order K, we use an
idea suggested by Schuller et al. [7]. Let |0 (f)|* be the masked
threshold for the kth block, and notice that we would like to find a
filter with a transfer function that satifies | Hy (f)|? ~ |0 (f)| 2. If
we use |0 (f)|? as a short-term power spectrum, then the symmetric
autocorrelation sequence {ryi},i = 0,..., %, is found simply as
the inverse DFT of |0x(f)|?. The filter coefficients hg 1, ..., hi, &
are now easily found from {rx,;} by use of the Yule-Walker equa-
tions [8].

At startup, we do not have any samples available at the encoder.
To obtain the block of M samples, which is required to perform the
frequency analysis leading to the psychoacoustic model, we choose
to use a growing block size. This avoids introducing startup de-
lays. At time zero (k = 0), we only have the current sample g
available. One sample is clearly not enough information to establish
an accurate frequency domain representation for the psychoacoustic
model. We will therefore employ a fixed (pre-computed) average
psychoacoustic filter of order K for the first few time instances, say
up to time j. At time j, we have access to j 4+ 1 samples and we
use these to obtain a, possibly crude, approximation of the psychoa-
coustic model. To avoid excessive variations of the filter, we use a
smoothed version of the filter, e.g. we may use a weighted average
between h; and h;_1. At time M, we use the filters derived above.

An important difference to previous work see, e.g., [7, 5] is that,
in our case, we do not need the perceptual filter at the decoder. We
do therefore not need to worry about whether smoothing the filter
coefficients yields unstable inverse filters. Furthermore, we do not
need to encode and transmit the filter coefficients.

2.3. State-Space Interpretation

Since we are working with time varying filters it is convenient to
formulate the problem in the state space domain.

An equivalent minimal state-space form for the filter Hy(2) is,
see, e.g., [9]

Hi(z) =14 Cy(2I — A)'B ©)
where A € RF>*K B ¢ RF*! and C), € R**¥ are given by
0 0 O 0 1 h
1 0 0 0 0 h:;
A=[0 1 0 O B=|"%.cl=| 7| ©®
0 0 1 0 0 o ¢
and are related to the sequence of filters {hs } through [9]
hgn =CrA"'B, n=1,....K, k=0,.... (1

With this, we can express the weighted error €, € R as given by (2)
in state-space form, that is

Zhy1 = AZk + B(xr — yk) 8)
er = Crzr + ((L‘k — yk) 9)

where Z, € RE is the system state vector given by
Zk = [Tho1 — Yho1, The2 — Yke2, - - The K — yka]T (10)



Based on this state-space representation, it can be shown that the
cost function (1) can be rewritten as [2]

Ti' (@) = Wk (@r — 9x) + Tzl (1)
where W, € RV XN is given by
R0 0 0
U, = hkai  hgko 0O : (12)
0
hi,N—1 hik1 hio
and Ty, € RV*X satisfies
T
Ty = [cf,(cm)ﬁ...7(ckAN*1)T] . (13)
2.4. Multiple-Description Coding
In this section, we review traditional MD coding. In MD cod-

ing a single source vector Zj is mapped to multiple output vectors
(U9 Gy - - - Gp~ "), which are usually referred to as descriptions [1].
In the general case, we have n > 1 descriptions. The problem is to
design the n encoders f; : Ty — T; € RY,j=0,...,n—1and
2" decoders g¢ : {7l : j € £} — G, e RN £ C{0,...,n —1}.

For every time instance k, the m current descriptions, i.e.
{90, G, ..., gp~ '}, are transmitted over n channels so that de-
scription j, i.e. gj‘,i, is transmitted on the jth channel. At any time k,
an arbitrary subset of the channels may break down. Which of the
channels are currently working is not known to the encoder, but it is
known to the decoder.

The optimization problem of the encoders and decoders can be
cast into a Lagrangian framework, where the partial distortions due
to reconstructing using subsets of the descriptions are individually
weighted by a set of Lagrangian weights. Specifically, let 0 < ~, €
R be the non-negative weight for the subset of descriptions indexed
by ¢ where £ C {0,...,n — 1}. The aim is to minimize some
weighted' cost, say J, where

>

£C{0,...,n—1}

T (zx) 2 veD¢ (14)

and where D, is the expected distortion due to reconstructing using
the set of descriptions indexed by ¢. A simple distortion metric is the
mean squared error (MSE) defined by

D¢ 2 E| Xy, — Vi (15)
where X}, and Y} are random vectors.

The traditional MD design problem is then to find a set of jointly
optimal encoders {f; : 7 = 0,...,n — 1} and decoders {g, : ¢ C
{0,...,n — 1}} such that (14) is minimized. This minimization is
subject to rate constraints on the individual description rates R, j =
0,...,n—1.

In this work we will construct the MD coders by use of index-
assignments and lattice vector quantization following the design pre-
sented in [10]. Index-assignment (IA) based MD quantization is a
technique first proposed by Vaishampayan [11]. In [A-based MD
quantization, the source vector X}, is first quantized by a central

!"The weights v, may, for example, reflect successful decoding probabili-
ties, i.e. the probability of receiving only the descriptions, which are indexed
by 4.
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quantizer Q. in order to obtain the central reconstruction vector
Ae € RY ie A = Qc(Xk). At this point, a non-linear func-
tion « is applied on A. in order to map A. to n descriptions, i.e.
a(Ae) = (No,...,An—1), where \; € R™ denotes the codeword
for the ith description.? If the quantizers in question are lattice vec-
tor quantizers then \. as well as \;,i = 0,...,n — 1, are all points
in different lattices, see [12] for details.

3. MH/MD CODER FOR WIRELESS APPLICATIONS

In this section we describe our proposal. It brings together the MD
coding paradigm described in Section 2.4 with the MH quantizer
described in Sections 2.1 and 2.3.

3.1. Encoder

We first note that an MD encoder outputs multiple descriptions
whereas the MH quantizer Q' (-) previously defined gives only a
single output. Furthermore, there is a feedback loop at the encoder,
since past decisions affect the current decision through the system
state vector Zx, see (10). In order for this feedback loop to to be well
defined at the encoder, we need to form a single output based on the
n descriptions. Towards that end, we define® (see also Footnote 1)

>

0C{0,...,n—1}

L

Yeijs (16)

<

k

and take the output ¢y to be the first sample of yr. Thus, at the
encoder, we feed back ¢, and the vector Zj, previously given by (10)
is now formed as

(7

_ _ _ _ T
Zp = [Th1 — Jh—1, Th-2 — Jh—2, - - -, T K — YK

In order to construct the MD quantizer, we will adopt an offline
design where the cost function given by (14) and (15) is minimized.
Furthermore, recall from Section 2.1, that in MH quantization only
the first output sample of the MH quantizer is transmitted to the de-
coder. Thus, in our case, we need to transmit the first sample y;, of
the descriptions 77,7 = 0,...,n — 1 to the decoder. When design-
ing the MD quantizer, we therefore need to minimize (14) subject to
entropy constraints on the discrete entropy of only the first sample
of each of the descriptions.

For any given number of descriptions n, bit rates { R; };;01 , and
weights {v¢}ecqo,...,n—1}> We use the method presented in [10] in
order to design the MD quantizers and index assignment function
o, see Section 2.4. To be able to decode, when receiving only the
first sample of the n descriptions, we construct the N-dimensional
MD quantizer as a cascade of N scalar MD quantizers. Then, in
the online process, we take into account the perceptual weighting by
minimizing (14) where Dy is now given by

Dy & ||y (T — §r) + Tuzil>. (18)
The optimal set of n descriptions is the one that minimizes the
cost (14) and (18). The first sample of each of these n N-
dimensional vectors is then entropy coded and transmitted to the
decoder.

2The mapping «, which is usually called an index-assignment function,
is invertible. Thus, if all n descriptions, Ag, . .., An—1 are received, then the
central reconstruction A\c = a~ ()Xo, ..., An—1) can be obtained.

3We note that how to form the vector to be fed back at encoder is a non-
trivial problem. This is partly due to the fact that the encoder does not know
in advance which descriptions will be received at the decoder.



3.2. Decoder

At the decoder, we receive a set of 0 < m < n descriptions, which
we first entropy decode and then reconstruct it using the decoding
map gy : {yl : 7 € £} — 9p € R, where £ C {0,...,n —
1} denotes the indices of the received descriptions.* In particular,
the simple decoding rule where the reconstruction is given by the
average of the received descriptions generally works well [10, 5].
Thus, when 0 < m < n, we set ji, = — > ce Ui, Whereas when

m
m=nweletj =a *(y2,..., yp!
received, we set 7/, = 0.

Notice that the reconstruction g, is designed to be a good rep-
resentation of x; from a perceptual point of view and will thus, in

general, not correspond to an MSE estimate.

). When no descriptions are

4. SIMULATIONS

We consider the situation of n = 1, 2, and 3 descriptions and fix the
total bit rate as R = 4 bits/sample. We let the side description rate
R be the same for all descriptions, i.e. Rs = Rt /n. For example, if
n = 2, then we have R = 2 bits/sample, whereas for n = 3 we have
Rs = 1.33 bits/sample. We assume the packet loss probabilities to
be i.i.d. with probabilities p; = p,7 = 0,...,n — 1. Furthermore,
we let p = 1%, 5%, and 10% and let the weights {~¢} be given by
the probability of receiving the given set of packets, e.g., forn = 2
we have yo = 71 = (1 —p)p,70.1 = (1 —p)(1 —p) and y = p*.

We design an entropy-constrained scalar [A-based two-descrip-
tion MD quantizer following the approach given in [10]. When the
horizon length [V is greater than one, we form a vector (product) MD
quantizer by using the same scalar MD quantizer along each of the
N dimensions. We use the psychoacoustic model of MPEGI layer 1
and use a model order of K = 15. The test signal is 5 x 10* samples
from a piece of jazz music having a sampling frequency of 44.1 kHz.

The total weighted distortion, D, due to reconstructing using
v, € R at time k (at the decoder), is given by

K
Dy = Z th,i(wkﬂ' — Jrs)
e |i=0

We have included D for the above example in Table 1. Rows 4-5,
refer to forming the feedback variable ¢ at the encoder as in (16),
whereas in rows 6-7 we simply adopted g, = o~ (7§, ..., 7¢ '),
i.e. the central reconstruction. In both cases, we minimize (18). For
comparison, we also construct a single description (SD) scheme, and
repeat the description n— 1 times, see rows 1-3. This gives a total of
n identical descriptions, all at a bit rate of Rz /n bits/sample. This
is a simple but less efficient way to construct multiple descriptions.
We observe from Table 1 that the MD/MH optimized framework
yields a lower weighted distortion than the SD/MH framework (also
in the case where we repeat the descriptions in the SD-setup). We
also observe that by increasing the horizon length, the distortion is
not always reduced. It is possible that this apparent inconsistency
is due to the fact that the encoder does not know the exact loss pat-
tern experienced by the decoder. Thus, in the case of larger horizon
lengths, the deterministic online optimization performed at the en-
coder, which is based on a feedback variable comprising a weighted
sum of the multiple descriptions, is not adequately matched to the
stochastic behavior of the packet losses observed by the decoder.

2
(19)

4Notice that 92 is generally different from standard MD decoding gy, see
Sec. 2.4. Indeed, 92 works on a set of m = || scalar elements, whereas gy
works on a set of m N-dimensional vectors.
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p=1%

p=5%

p=10%

n| Method | N=1 N=2| N=1 N=2| N=1 N=2

1| MH/SD | 76.56 77.57 |326.29 326.04 | 635.87 633.60
2| MH/SD | 89.80 88.55 |114.80 119.52|209.64 206.83
3| MH/SD |219.48 216.66 | 220.09 218.49 | 232.83 230.72
2 |MH/MD | 49.71 41.75 |103.62 107.90 | 201.85 202.43
3| MH/MD | 31.99 30.53 | 108.01 103.56 | 200.29 196.33
2 |MH/MD | 44.25 44.20 |106.36 107.98 | 201.65 198.48
3| MH/MD | 31.67 31.43 |106.20 105.16 | 202.67 197.69

Table 1. Total weighted distortions, see (19).
5. CONCLUSION

We presented a new idea in low delay perceptual audio coding for
lossy networks. Specifically, we showed that it is possible to com-
bine MH quantization with MD coding. The techniques complement
each other well: The former makes it possible to take into account
perceptual models when shaping the quantization noise, and the lat-
ter provides robustness towards packet losses.
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